

भारत सरकार Government of India विद्युत मंत्रालय Ministry of Power उत्तर क्षेत्रीय विद्युत समिति Northern Regional Power Committee

No. 3क्षेविस/प्रचालन/107/01/2019/3801-3839

दिनांक:25.04.2019

फैक्स संदेश / FAX MESSAGE

सेवा में : संरक्षण उप-समिति के सदस्य (सूची के अनुसार)।

To: Members of Protection Sub-Committee (As per List)

विषय: संरक्षण उप-समिति की 37 वीं बैठक की कार्यसूची | Subject: Minutes of 37th Protection Sub-Committee Meeting.

संरक्षण उप-समिति की 37वीं बैठक, 21.01.2019 को 10:30 बजे से से उ.क्षे.वि.स. सचिवालय, नई दिल्ली में आयोजित की गई थी | उक्त बैठक का कार्यवृत उत्तर क्षेत्रीय विद्युत् समिति की वेबसाइट (http://www.nrpc.gov.in) पर उपलब्ध है |

The 37th meeting of Protection Sub-Committee was held on **21st January, 2019** at **10:30 Hrs** at **NRPC Secretariat, New Delhi**. The minute of the meeting is available on NRPC website (http://www.nrpc.gov.in).

--Sd--(Saumitra Mazumdar) Superintending Engineer (O)

18-ए, शहीद जीत सिंह मार्ग, कटवारिया सराय, नई दिल्ली- 110016 फोन:011-26967842 फेक्स: 011-26865206 ई-मेल: seo-nrpc@nic.in वेबसाईट: www.nrpc.gov.in 18-A, Shaheed Jeet Singh Marg, Katwaria Sarai, New Delhi-110016 Phone: 011-26967842 Fax: 011-26865206 e- mail: seo-nrpc@nic.in Website: www.nrpc.gov.in

List of Members of PSC

S.No.	Designation	Organization	Fax No.
1	Director (P&C)	BBMB	0172-2652054
2	General Manager (SLDC)	DTL	011-23236462
3	GM (O&M)	Delhi Transco Limited	011-23236462
4	GM (T)	IPGCL	23370247
5	Chief Engineer (TS)	HVPNL	0172-2591244
6	SE (M&P)	HVPNL	0172-2540014
7	SE (SO & SLDC)	HVPNL	0172-2560622
8	SE (SLDC)	PTCUL	0135-2763570/2451160
9	SE(T&C)	PTCUL	0135-2451826
10	Chief Engineer (SLDC)	UPPTCL	0522-2287880/2288736
11	SE(Tech)	HPGCL	0172-5022436
12	SE(O&M-VI)	HPGCL	0180-2566768
13	Chief Engineer (Transmission)	HPSEB	01972-223435
14	SE (PR& ALDC)	HPSEB	0177-2837143
15	Chief Engineer (C&S Wing)	PDD	0191-2474233
16	Chief Engineer (SLDC)	PSTCL	0175-2365340
17	Chief Engineer (P&M)	PSTCL	0161-2741280/2451491
18	CE (M&P)	RRVPNL	0141-2291891
19	SE (Electrical)	RRVUNL	01509-245299
20	Chief Engineer (LD)	RRVPNL	0141-2740920
21	SE (SO&LD)	RRVPNL	0141-2740920
22	Superintending Engineer (T&C)	UPPTCL	0121-2666062
23	Chief Engineer, (L-2)	UPRVUNL	0522-2287822/2287880
24	DGM (T&C)	PTCUL	0135-2760331
25	Chief Engineer (O&M)	NHPC	0129-2272413
26	GM (O&M) NR – I	PGCIL	011-26601079
27	GM (O&M), NR-II	PGCIL	01951-237186
28	Chief Manager (TS)	N.R.L.D.C	011-26852747
29	GM(OS-NR)	NTPC	0522-2305848
30	GM (OS)	NTPC Ltd	0120-2410082/2410068
31	DGM (Maintenance)	SJVNL	0177-2673283
32	DGM (O&M)	THDC India Ltd	01376-236305
33	Director (GM division)	CEA	011-26109750
34	General Manager	APCLP	01251-266326
35	Director	JPPVL	0120-4516201/4609464/4609496
36	Addl. CE(M&P-IT)	JVVNL	-
37	GM (Production)	Jhajjar Power Ltd	01251-270155
38	GM(P&M)	APL	7925557176
	Sh. Raj Kumar Rastogi Add.		
39	GM	TPDDL	011-66039175
40	President (Power Systems)	LPGCL	+91-22- 22048681
41	Director (NPC)	CEA	
42	NPCIL		
_	1.Maintenance Superintendent	NAPS	05734-222167
	2.Maintenance Superintendent	RAPS	01475-242060

I

A.1. Confirmation of minutes of 36 th meeting of protection sub-committee	4
A.2. Implementation of Recommendations of Task Force	4
A.2.1. Database of protection settings	4
A.2.2. Periodicity of Third-Party Protection Audit	5
A.2.2.1 Training Programme/Workshop on Protection Audit for Protection sy Engineers	
A.3 Violation of Protection standard in case of Inter-Regional lines of voltage above	
A.4 Grid disturbance at NAPS on 15.02.2018 due to Bus fault at 220kV Atrau by NPCIL)	, U
A.5 Final report of the group to suggest measures for bringing improvement i	
Power System Protection among the utilities in Northern Region	
A.6. Format for Detailed Analysis report	11
A.7. Persistent surge problem encountered by KWHEP since commissioning of substation. (Agenda by Karcham Wangtoo HEP)	
A.8. Follow up action on outstanding issues from previous meetings:	
A.8.1. Non- availability/defective PLCC link of STU Lines terminated at POW (NR-2) substations	
A.8.2. PLCC and Auto Re-closure issues related to UPPTCL	
A.8.3. Islanding scheme for Rajasthan and Punjab	14
A.8.3.1. Islanding scheme for Rajasthan	14
A.8.3.2. Islanding scheme for Punjab	
A.8.4 Progress of rectification of deficiencies observed/improvements suggeste Protection Audit	
A.8.5. Third Party Protection Audit by the Protection Experts for intra-states balance system not covered in Basic Protection Audit	•
A.8.6. Status of Bus Bar protection	17
A.8.7. CERC order on Petition No. 9/SM/2014 and 10/SM/2014	
A.8.8 General Recommendations/Best Practices in PSC meeting	
PART-B: NRLDC	
A.1 Tripping EventsError! Bookmark r	not defined.

<u>Minutes of 37th meeting of Protection Sub-Committee (PSC) held on 21.01.2019 at</u> <u>10:30 hrs. at NRPC Secretariat, New Delhi</u>

PART-A: NRPC

37th meeting of Protection Sub- Committee (PSC) of NRPC was held on 21.01.2018 at NRPC Secretariat, New Delhi. The list of participants is enclosed at **Annex-I**.

A.1. Confirmation of minutes of 36th meeting of protection sub-committee

Minutes of 36th meeting of Protection Sub-committee were issued vide letter dated 29.11.2018. The Minutes are available on NRPC's website at http://www.nrpc.gov.in. No comments were received.

Sub-Committee confirmed the Minutes of 36th PSC meeting.

A.2. Implementation of Recommendations of Task Force

As a follow, up of one of the recommendations of Enquiry Committee headed by Chairperson, CEA on grid disturbances that took place on 30th and 31st July 2012, Ministry of Power had constituted a 'Task Force on Power System Analysis under Contingencies' in December 2012. The Task Force had submitted its report in August 2013. In a meeting taken by Secretary (Power), GoI on 11.03.2014, it was decided that the report be given wide circulation and its recommendations be implemented in a time bound manner. Some of the **issues** arising out of recommendations of the Task Force were as under:

A.2.1. Database of protection settings

Based on the recommendations of the Task Force, it was decided that data regarding settings of relays shall be compiled by the CTU and STUs in their respective network and furnished to RLDC and SLDC respectively with a copy to RPC for maintaining the database. The database was to be kept updated and verified during the audit. Regarding the protection coordination studies for proper Zone-III setting it was informed in 34th PSC meeting on 4th August, 2017 and 35th PSC meeting on 20th June, 2018 that these studies will be part of the project for maintaining database of protection setting database.

In 35th TCC/39th NRPC meeting approved the proposal for engaging a third party for Protection database was approved and NRPC sect. was authorised to take further necessary action in this regard. A format for submission of database was finalised in 30th PSC meeting.

Subsequently, approval of Chairperson, NRPC was obtained authorising Member Secretary, NRPC to carry out following activities:

i. Formation of group for finalization of detail scope of work of the Project.

- ii. Submission of proposal for financing the Project through Power System Development fund (PSDF).
- iii. Opening of a separate account in the name of 'NRPC Protection Database Fund' for receiving the grant from PSDF for the Project.
- iv. Carry out e-tendering process including tender publication, opening, evaluation etc. for selecting contractor for implementing the scheme based on scope of work of the Project finalized by the group.

As approved, a core committee was formed to define the comprehensive Scope of the project comprising members from the utilities of NR. First meeting of the group for defining the scope of the project was held on 01.02.2018 and inputs were received from the members. Further, bid document including all the relevant suggestions/comments of the members was finalized.

Simultaneously, NRPC Secretariat also submitted the DPR of the project for PSDF funding based on the draft bidding document. The proposal of NRPC was scrutinized by the Techno-Economic Sub Group and further examined by Appraisal Committee and Monitoring Committee. Both Committees recommended the proposal for the grant from PSDF funding and also qualified proposal for 100% funding through PSDF.

In pursuance of the above, tender was published on Central Public Procurement (CPP) Portal of Govt. of India and NRPC website on 30.08.2018 and last date for receipt of bid was 15.10.2018 up to 14.00hrs. The technical bid was to be opened on 16.10.2018 at 15.00 hrs. However, only 2 bids were received at the time of bid opening. Hence, retendering for "Creation and Maintenance of Web Based Protection Database Management and Desktop Based Protection Setting Calculation Tool for Northern Region" was done. Subsequently after retendering, bid opening was held on 15.11.2018 at NRPC Secretariat, New Delhi. The total three no. of bids were received at the time of bid opening but only one bid was found responsive.

 37^{th} PSC meeting on 21^{st} January, 2019 - EE(O) informed that again retendering was carried out to ensure healthy competition. The last date for receipt of bid was 10.01.2019 up to 13.00hrs. The technical bid was opened on 11.01.2019 at 14.30 hrs wherein 2 bids were received. Both bids are being forwarded to Bid evaluation committee for further evaluation.

A.2.2. Periodicity of Third-Party Protection Audit

The enquiry committee constituted by Govt of India to enquire into grid disturbances on 30^{th} and 31^{st} July, 2012 has recommended a thorough third-party protection audit need to be carried out in time bound manner as there is need to review the protection schemes.

In 18^{th} PSC meeting on 03^{rd} Sept, 2012, it was agreed that the exercise of protection audit should be carried out periodically and frequency of the same could be 2-3 years.

The following points are proposed to review the protection schemes periodically:

- Periodicity of Third-Party Audit from CPRI.
- Periodicity of Third-Party Audit from members of STUs nominated by NRPC Secretariat for Third Party Protection Audit of different STUs.
- The scope of Third-Party Protection audit of STUs.
- Any other Agency other than CPRI authorized to carry out Third Party Protection Audit.

In 35th PSC meeting held on 20th June, 2018 - The need of Protection audit was emphasized and members were requested to suggest suitable periodicity for the same. It was requested that periodicity should be decided uniformly at NPC level and each RPC should give them a suggestion. Members deliberated and recommended that the exercise of third party protection audit should be carried out periodically and frequency of the same should be 5 years.

It was also stated that Third Party Protection audit can be done any reputed agency working in the field of Power System protection other than CPRI. Members were requested to send the updated nominations of the protection engineers which would be carrying out the Third-Party Protection audit. The previous list was finalized in 24th PSC meeting which is attached as Annexure – II of the Minutes of 35th PSC meeting.

In 39th TCC/42nd NRPC meeting held on 27th and 28th June, 2018:- It was informed that issue of periodicity of third party protection audit was deliberated in 35th Protection Sub Committee where members recommended that Third Party Protection audit can be carried out periodically either by a team of Protection Engineers of the utilities as per the list finalized by the Protection Sub-Committee or by any reputed agency working in the field of Power System. The periodicity of the protection audit is to be 5 years as decided by 35th PSC held on 20.06.2018.

All the utilities were requested to share the feedback of the Protection audit carried out from other agencies so that agencies can be rated which will help other utilities to select the agencies for their Protection audit.

Committee was apprised that decisions of TCC/NRPC will be further communicated to NPC for the uniformity and finalization at National level. TCC recommended and NRPC further approved the periodicity of the protection audit to be 5yrs and same can be carried out by CPRI or by any other reputed agency also.

Further, agenda was submitted for deliberation in 8th NPC meeting held on 30.11.2018. The MoM are still awaited.

 37^{th} PSC meeting on 21^{st} January, 2019 - SE(O) informed that issue was deliberated in 08^{th} NPC meeting held on 30^{th} November, 2018 wherein it was it was decided each RPC could have their own arrangements for carrying out the third-party protection audit.

All utilities (except DTL, BBMB, PSTCL and RRVPNL) were again requested to submit updated nominations of the protection engineers which would be carrying out the Third-Party Protection audit. The updated list is enclosed at Annexure – II.

A.2.2.1 Training Programme/Workshop on Protection Audit for Protection system Engineers

Protection is one of the key operational aspects of Power system. The revision in the protection settings/schemes after modification of network topologies is essential for reliable operations of the Grid. Hence, periodic audit of these protection schemes/settings/protection functions is essential for reliable and secure operation of the Grid.

Hence, it is important that Protection system engineers are well educated and trained to carry out the exercise of Protection Audit. Hence, it is proposed to organize Training Programme/Workshop on Protection Audit for Protection System Engineers.

Power System Division of Central Power Research Institute has submitted an offer for conducting 3 days Training Programme/Workshop on Protection Audit for Protection System Engineers which is enclosed as Annexure – II of 36th PSC agenda.

In 36th PSC meeting held on 19th September, 2018, agenda was deliberated in detail and PSC recommended that the training programme/workshop on Protection audit to be conducted by CPRI and approval of the same may be requested from NRPC.

In 40th TCC/43rd NRPC meeting held on 29th and 30th October, 2018, it was informed that a proposal from Power System Division of Central Power Research Institute for conducting 3 days Training Programme/Workshop at Bangalore on Protection Audit for Protection System Engineers has been received. It was told that training programme isn't residential and participants would be making their own arrangements and guest house accommodation could be provided at CPRI on twin sharing basis on chargeable basis, if available. The fee per participant for 3 days training is Rs. 10,500 exclusives of taxes. NRPC approved the proposal of carrying out 3 days Training programme on Protection audit at Bangalore through CPRI. Further, NRPC sect. has conveyed the acceptance to CPRI. Further, CPRI has proposed to organize training in 2 batches of 30 participants each in the month March and April, 2019.

37th PSC meeting on 21st January, 2019 – SE(O) informed that CPRI has been conveyed the acceptance for Training Programme/Workshop on Protection Audit for Protection system Engineers. CPRI was requested to conduct the training program in February. Due to some difficulties, CPRI has proposed to organize training in 2 batches of 30 participants each in the month March and April, 2019. He further informed that confirm dates for training program will be informed in due course of time.

Members were again requested to send the nominations for Training Programme/Workshop at Bangalore on Protection Audit for Protection System Engineers to be conducted by CPRI.

A.3 Violation of Protection standard in case of Inter-Regional lines of voltage 220kV and above

The section 3.e of Grid Standards Regulation of CEA, 2010 states that

"Provide standard protection systems having the reliability, speed, selectivity and sensitivity to isolate the faulty equipment and protect all components from any type of faults, within the specified fault clearance time and shall provide protection coordination as specified by the Regional Power Committee

Explanation: For purpose of this regulation "fault clearance time" means the maximum fault clearance time as specified below:

Sr. No.	Nominal System Voltage (kV rms)	Maximum Time (in msec)
1.	765 and 400	100
2.	220 and 132	160

Provided that in the event of non-clearance of the fault by a circuit breaker within the limit specified in Table, the breaker fail protection shall initiate tripping of all other breakers in the concerned bus section to clear the fault in the next 200 msec. "

Such delayed clearance of faults of Inter-regional lines may prove fatal to the security of the grid. Since, tripping of Inter Regional Lines of voltage 220kV and above are matter of concern to Grid security suitable action needs to be taken.

As per the IEGC clause 5.2.r and clause 15.3 of CEA grid standard, DR/EL of all the tripping of 220kV and above level shall be sent within 24 hours of NRLDC.

In 35th PSC meeting held on 20th June, 2018- It was stated that violation of Protection Standard should be avoided and DR/EL should be sent to NRPC/NRLDC within 24 hours as the tripping analysis for inter-regional lines is very important for safe and reliable operation of Grid. It was also informed that this was also followed up regularly in the OCC meetings.

In 36th PSC meeting held on 19th September, 2018- Representative of NRLDC informed that agenda pertains to violation of Protection standard such as delayed clearance of fault, spurious tripping, DR/EL submission within 24hrs and other events resulting into violation of Protection standard. A whatsapp group of PSC members was created in which information regarding tripping (name, date, time) and date & time at which details have been submitted could be shared. This would help in updating the database regularly and information could be shared amongst all.

In 40th TCC/43rd NRPC meeting held on 29th and 30th October, 2018-Representative of NRLDC informed that violation of protection standards was being highlighted regularly for inter-regional lines by circulating letter, but there were many single elements tripping violating protection standards which might result into multiple element tripping. Representative of NLDC emphasized on submission of DR/EL within 24 hrs as they were very important for further analysis. MS, NRPC told that utilities should submit the detailed report as well remedial measures taken for such events. He suggested utilities could make presentations in the PSC meetings explaining the tripping, remedial measures taken and learning therefrom like practice being followed in PCM of WRPC.

37th PSC meeting on 21st January, 2019- Representative of NRLDC informed that monthly list of Grid incidences is being circulated where violation of Protection standards has been observed. Utilities were requested to avoid any violation of Protection standards

A.4 Grid disturbance at NAPS on 15.02.2018 due to Bus fault at 220kV Atrauli S/S (Agenda by NPCIL)

On 15.02.2018, NAPS both units were operating smoothly at full power, Grid parameters were also maintaining normal. All 220kV lines were in service. (Enclosed as Annexure-VI of 35th PSC agenda) At 19:17:10 Hrs, voltage dip from 220 kV up to 120 kV was observed at NAPS, however NAPS both units survived. 220kV Atrauli S/S is connected only with NAPS, Narora and Harduganj TPS, both are generating stations and hence an important element of grid network. At around 19.15hrs, normalization of one ICT was in progress at Atrauli S/S. During the process, its 220kV side circuit breaker developed fault causing flashover/ damage of the CB resulting into bus fault. Atrauli S/S does not have 220kV Bus differential protection scheme hence fault propagated into remote end 220kV S/S Narora and Harduganj.

In the 35th PSC meeting held on 20.06.2018 - Representative of NPCIL told that damage of the CB resulted into bus fault at 220kV side of Atruali S/s. He further told that Atrauli S/S does not have 220kV Bus differential protection scheme hence fault propagated into remote end 220kV S/S Narora and Harduganj, however distance relay of line protection operated and 220kV Atrauli-Narora, Atrauli - Harduaganj lines tripped in zone -4 at Atrauli end. The fault duration was 250 msec. It was informed that it is mandatory for all 220kV and above S/s to have bus differential protection as per the CEA regulations. He further told that lines were charged after the incidence without informing either Narora or Harduaganj end.

Representative of UPPTCL informed that bus differential protection at Atrauli s/s is to be commissioned by the end of July. He also informed that zone-4 setting has been changed to 160 msec. Representative of NPCIL also told that there is no bus differential scheme at 220kV Sambhal s/s and 220 kV Simbhaoli s/s. Representative of UPPTCL assured to look into matter and expedite the installation of bus differential scheme.

In 36th PSC meeting held on 19th September, 2018- Representative of UPPTCL stated that panels were delivered but installation and commissioning has not been completed. He further told that SEL has been awarded with the work.

37th PSC meeting on 21st January, 2019 - Representative of UPPTCL informed that bus bar protection relay has been installed and commissioned. He further told that Contact Multiplier Relay (CMR) is to be installed for phase wise LBB initiation as spare contacts were not available in old relay.

Representative of NRLDC highlighted that it is long pending issue and *Minutes of 37th Protection Sub-Committee (21st January, 2019)*

compromising Grid security due to such a peity issue needs to be avoided.

A.5 Final report of the group to suggest measures for bringing improvement in the field of Power System Protection among the utilities in Northern Region

A group was constituted by Member Secretary, NRPC vide letter No. NRPC/OPR/107/06/ 2015/ dated: 26.08.2015 to suggest measures for bringing improvement in the field of Power System Protection among the utilities in Northern Region. The report was submitted in 34th TCC/38th NRPC meeting held on 24th /25th October, 2016 wherein the report was accepted for implementation. It was also agreed in the NRPC meeting that each utilities would immediately start working to develop training module for Basic Training on Protection System for Sub-Station Engineers (Level -1) and start training programs within 6 months. The issue was also discussed in 32nd PSC meeting wherein utilities were requested to organize Level-1 training and would submit the details.

BBMB, POWERGRID NR-I and PITCUL are conducting the training on Protection System (Level - I) at regular intervals.

First training programme of Level-2 was conducted successfully from 21st-25th November, 2016 for 25 nos. of participants through POWERGRID. 35th TCC/39th NRPC meeting held on 1st/2nd May, 2017 - Advised to conduct more such programmes including Level-3 for Protection System Engineers.

Protection training for level -3 was conducted successfully from 19th-23rd March, 2018 at Udaipur for 25 nos. of participants through POWERGRID.

In 35^{th} PSC meeting held on 20.06.2018 - Members were informed that 1 batch of level - 2 and level - 3 training was completed and another batch for training is to be taken up shortly. Utilities were requested to share the details regarding content, no. of days of level-1 training arranged by them.

Representative of RRVPNL and DTL told that training is being arranged by them and details will be shared. Other utilities were also requested to share the details at the earliest.

In 39th TCC and 42nd NRPC meeting on 27th and 28th June, 2018 – It was told that NRPC Sectt has conducted Level-3 training for Protection System Engineers from 19th to 23rd March, 2018 with this the first batch for Level-2 and level-3 training has been successfully completed. It was also informed that NRPC Secretariat would be going for another batch of Protection System Engineers Level-2 and Level-3 training for which no. of participants might be increased from 25 to 50. Utilities were requested to preferably nominate the engineers working in the field of power system protection and make sure that nominated individual is available for entire duration of the training. It was stated that as the participants are being trained as trainer, they should further transfer the knowledge within their own utility so that additional trained manpower can be deployed.

In 36th PSC meeting held on 19th September, 2018 – It was informed that NRPC in its 42nd meeting has approved for 50 no. of participants for 2nd batch of Level-2 and Level-3 training of Protection System Engineers. It was proposed that training might be organized through any one of the OEM such as ABB, SIEMENS, GE etc. which would also include classroom training as well as hands on training on Relays.

In 40th TCC/43rd NRPC meeting held on 29th and 30th October, 2018- NRPC approved training to be organized through any one of the OEM such as ABB, SIEMENS, *Minutes of 37th Protection Sub-Committee (21st January, 2019)*

GE etc. and authorized MS, NRPC to take necessary action in this regard.

37th PSC meeting on 21st January, 2019- Representative of Punjab informed that trainings were being conducted for operator level personnel in Punjab and its detail would be shared. Representative of Haryana, UP and POWERGRID also informed that Level-1 training programmes are being conducted regularly whose details would be shared.

A.6. Format for Detailed Analysis report

Members of the Protection sub-committee had raised the issue of devising a common format for submission of detailed analysis report of the tripping event. Accordingly, a format had been prepared and same is enclosed as Annex-VII of 35th PSC agenda. In the discussions held in 33rd PSC meeting, it was decided to align the format as per the SOPR. A committee to align the format as per SOPR is constituted and advised to submit the report by 04.08.2017.

In the 34th PSC as well as 35th meeting, it was decided to deliberate on format once the constituted committee submits its report. Members were requested to give the suggestions/comments about the format for Detailed Analysis Report. The POWERGRID, NR-I has suggested a format for the Detailed analysis report enclosed as Annex – III of 37th PSC agenda.

36th PSC meeting on 19th September, 2018- Representative of NRLDC informed that format was prepared in such a way that event could be concluded from submitted data and hardware database of DR/EL facility and Numerical relays would be created. The database of DR/EL facility and Numerical relays at substation would help in monitoring the compliance of different protection standards.

Representative of POWERGRID told that main objective of any protection engineers is to study/analyse cause of the tripping and suggest/take remedial measures to avoid such trippings in future. He told that detailed analysis report consisting of above is regularly submitted by POWERGRID. He further stated that excel file format attached is time consuming which will affect the main objective of analysis. He agreed that database is necessary for which data can be submitted once. He stressed that not only the format but also its compliance should also be discussed considering its complexity.

Representative of DTL stated that data in mentioned format can be submitted but stressed that focus should be on tripping analysis. Representative of Punjab told that it is difficult to submit the data in mentioned format as many times trippings weren't reported by field engineers. He was of the view that many columns in excel format were irrelevant Representative of UPPTCL stated that format is very long but they were submitting the data in mentioned data.

Representative of NRLDC emphasized that data in the mentioned format is as important as tripping analysis and both should be submitted. SE(O) highlighted that data could also be used for Transmission availability certification. He advised to begin the

data submission in mentioned format and considering the issues faced in implementation format would be simplified further, if required.

A.7. Persistent surge problem encountered by KWHEP since commissioning of

Kala Amb substation. (Agenda by Karcham Wangtoo HEP) Background of problem:

KWHEP (4 x 250 MW) was connected to Abdullapur through double ckt line (212 km) since its commissioning in yr. 2011. This line is being maintained by Jaypee Power Grid Ltd. This line was working very well till Nov '2017 when Kala Amb substation was connected through LILO at about 175 km from KW. Ever since the introduction Kala Amb S/s, we are facing the problem of '**increase in LA counters'** located at Karcham Wangtoo Pothead yard. This increase is taking place in all the LAs of both ckt 1 and ckt 2 (Total six nos. LA).

Risk to KWHEP:

The counters have increased manifold (6-7 times) since introduction of Kala Amb and is still continuing to increase. Such high increase and further increasing trend pose risk to our LAs, power transmission and grid. Multiple attempts were taken from Kala Amb end to close their circuit breaker on 21st Nov' 17 and 5th Dec' 17 for back charging the line, as their relay tripped due to SOTF each time, they tried to close the CB, and the LA counters increased at Wangtoo end on all trials. The generating station are at the receiving end and bear the most of the risk posed to our equipment and generation loss.

Action till now:

The issue was discussed with our counterparts at Kala Amb several times telephonically and requested to solve the problem. As per their request, we rechecked all our setting and also sent our relay settings to them for review which was found ok. The mail was further forwarded to AM NR2 and several other people in PGCIL by Kala Amb team. On 5th April '18, we received a reply from Mr Atul Mathur (Asst. Chief Design engineer) in which he requested us to have our LAs tested and report be submitted for review to PGCIL. We immediately got all our LAs tested by PGCIL National Test Laboratory, Jalandhar on 12.4.16. All the LAs were found in excellent working condition and the test reports were submitted to PGCIL on 13.4.18 (Copy of mail and test reports attached as Annexure-IV of the 37th PSC agenda).

Present Status:

We have no feedback till now after submission of our reports despite several telephonic reminders. Despite our request to involve us also in solving the problem, we are completely unaware of further development.

Looking at the huge risk at our end, it is requested to take appropriate action immediately to solve this long persistent problem.

37th PSC meeting on 21st January, 2019- Representative of KWHEP told that LILO for 400kV D/C Abdullapur-KWHEP was done at 400kV Kala Amb substation in *Minutes of 37th Protection Sub-Committee (21st January, 2019)* Nov, 2017. He informed when line is back charged from Kala amb s/s, it is observed that LA counters are increased at Kala amb s/s. He told that LAs were also tested at PGCIL National Test Laboratory which were found in order. He further informed that PIR aren't installed at CB in Kala amb s/s.

Representative of POWERGRID told that after LILO line length was decreased to 175 km and PIR aren't installed for the length less than 200km. He told that leakage current observed was also in the limits and the issue has already been taken up with the engineering department and it is also being followed up.

SE(O), NRPC asked POWERGRID to submit the report of Engineering department at the earliest. He suggested if issue isn't resolved, POWERGRID may appoint consultant to find out the solution.

A.8. Follow up action on outstanding issues from previous meetings:

A.8.1. Non- availability/defective PLCC link of STU Lines terminated at POWERGRID (NR-2) substations

22nd PSC meeting on 22nd July, 2013- POWERGIRD had submitted a list of its NR-2 sub-station in 22nd PSC meeting where PLCC was non-functional at other side.

36th PSC meeting on 19th September, 2018- Status of PLCC work in these substations, as updated in the meeting is as under:

SI. No.	Name of Substation	Name of Transmission Line	Availability of PLCC	Updated Status in 36 th PSC	Present status
PLC	C issues with	PSTCL			<u>.</u>
1	Amritsar	220 kV Verpal –I	Not installed	Equipment has been installed at both the ends. End to end testing would be completed by 30.09.2018.	Representative of PSTCL informed that panels installed were being replaced and end to end testing would be completed by the end of the month.

A.8.2. PLCC and Auto Re-closure issues related to UPPTCL

28th PSC meeting on 19th December, 2014 - POWERGRID had informed that there were various lines of UPPTCL wherein PLCC panels and auto reclosure schemes were not in working condition due to which frequent tripping of

lines on transient faults were taking place.

36th **PSC** *meeting on 19th September, 2018-* Status updated by UPPTCL and POWERGRID in the meeting was as under:

Sl. No.	Name of Transmission Line	Details of PLCC	Status
1.	220kV Allahabad- Rewa Road-I	PLCC link was through but failed frequently due to	Representative of UPPTCL stated that relay panels were to be replaced. The shutdown was
2.	220kV Allahabad- Rewa Road-II	non-availability of wave trap at Rewa Road end.	-
1.	220kV Kanpur- Mainpuri	PLCC panels not available	PLCC panels were supplied but yet to be commissioned.
1.	220kV Gorakhpur- Barhua	PLCC were not functional	Relays were replaced with the Numerical relays and it would be function within one month

A.8.3. Islanding scheme for Rajasthan and Punjab

A.8.3.1. Islanding scheme for Rajasthan

30th PSC meeting on 21st September, 2015 - RVPNL had stated that existing islanding scheme meant for RAPP-A and RAPP-B would change entirely if Mahi HPS is excluded from the scheme. Also, result of dynamic simulation studies had not yet been received from CPRI. RVPNL was requested to implement the scheme provisionally & necessary actions for procurement of relays etc. was to be initiated with completion target of one year. RRVPNL had agreed for the same.

31st PSC meeting on 7th June, 2016 - RVPNL stated that the procurement process for this islanding scheme was underway and the scheme, without considering Mahi, was expected to be functional by December, 2016.

32nd PSC meeting on 30th November, 2016 - RVPNL informed that the scheme excluding Mahi HPS would be implemented by June 2017.

33rd PSC meeting on 22nd February, 2017 - Status could not be confirmed as no representative of RVPNL attended the meeting.

34th PSC meeting on 4th August, 2017 - RVPNL intimated that relay purchase in process and the scheme is to be implemented by 31.01.2018.

35th PSC meeting on 20th June, 2018 – Representative RVPNL intimated that scheme has been approved but the purchase process was reverted back. He further told that re-tendering for relays is in process.

 36^{th} PSC meeting on 19^{th} September, 2018- Representative of RVPNL stated that procurement has been completed and scheme would be implemented by Dec, 2018. He told that Mahi HPS has been permanently excluded from the scheme.

37th PSC meeting on 21st January, 2019- Representative of RVPNL informed that procurement is under process and expected to be completed by 30th June, 2019 MS, NRPC requested RRVPN to submit the complete islanding scheme for Rajasthan at the earliest.

A.8.3.2. Islanding scheme for Punjab

A meeting was held on 27th November, 2014 at NRPC Secretariat to review the islanding schemes for Punjab. In this meeting, it was decided that PSTCL would implement the scheme envisaged for Lehra Mohhabat TPS and Bhatinda TPS at first instance. Thereafter, based on the experience of such scheme, the islanding scheme meant for Ropar TPS would be implemented. PSTCL had informed that stability study for the scheme was being carried out by CPRI and report of the same would be available by 31.12.2014. Thereafter, procurement would start.

29th PSC meeting on 9th February, 2015 - PSTCL had informed that CPRI has submitted the dynamic study for islanding scheme for Bhantida TPS and PSTCL was under process of implementing the scheme. Procurement process was underway and the scheme would get implemented by 30.11.2015. PSTCL was requested to share the approved scheme with NRPC Sectt. and NRLDC. PSTCL had agreed for the same.

31st PSC meeting on 7th June, 2016 - PSTCL had informed that relays for islanding scheme of Bhatinda TPS had already been procured and installation of these relays was under process. He further stated that the scheme would be made functional by 30.09.2016.

 32^{nd} PSC meeting on 30^{th} November, 2016 - PSTCL informed that Bhatinda, which is a part of the islanding scheme, would be in operation for a limited period during summer. In view of this, the scheme needs revision. Once the revised scheme is finalised it would be implemented. PSC advised PSTCL to finalise the scheme at the earliest and to share it with all the concerned including NRPC Sectt.

 33^{rd} PSC meeting on 22^{nd} February, 2017 - PSTCL was requested to expedite the process and submit the information at the earliest.

 34^{th} PSC meeting on 4^{th} August, 2017 – PSTCL was given approval to implement islanding scheme for only GHTP control area citing the plans of PSPCL to shut the GNDTP Bathinda plant by the year end. They were further requested to complete the same by 30.09.2017 and to submit the details of actual implemented schemes to NRLDC Secretariat and NRPC.

35th PSC meeting on 20th June, 2018- Representative of PSTCL stated that consent of PSPCL was received a one week before for the execution of Islanding scheme on only GHTP control area. It will be executed by 30.09.2018.

36th **PSC** *meeting on 19th September, 2018-* Representative of PSTCL stated that data was awaited from the PSPCL. He stated that PSPCL was requested to submit the data of the units which would be kept ON during peak/non-peak period. They have submitted the data stating that all the units would be kept ON but in actual scenario it has been observed that units for Lehra-Mohabbat TPS were off during winter and ran up to 50% in paddy seasons. He told that scheme would be implemented in a month after consultation with PSPCL.

37th PSC meeting on 21st January, 2019- Representative of PSTCL informed that installation and commissioning is under progress and it will be completed by 31st March, 2019 and Bathinda was dropped from the scheme. He informed that currently, scheme for Lehra Mohabbat is being implemented. MS, NRPC asked PSTCL to share the islanding scheme for Lehra mohabbat at the earliest.

A.8.4 Progress of rectification of deficiencies observed/improvements suggested in Basic Protection Audit.

The status of rectification of deficiencies observed in Basic Protection Audit carried out by POWERGRID & CPRI is to be submitted on monthly basis. The updated status in regard to expected completion time of rectification of protection related deficiencies as informed by utilities is enclosed as **Annexure-III**.

Utilities were requested to submit the updated status.

A.8.5. Third Party Protection Audit by the Protection Experts for intra-state system/ balance system not covered in Basic Protection Audit.

The status of TPPA as updated in the 34th PSC meeting is enclosed as Annex-VIII. In the 34th PSC meeting, PSC again stressed over non-rectification of deficiencies by most of the utilities. Utilities which have not submitted the action plan were requested to submit the same at the earliest. All the utilities were again requested to submit the action plan and to ensure expediting the process for rectification of discrepancies found in the audit. **Annexure-IV.**

Utilities were requested to submit the updated status.

A.8.6. Status of Bus Bar protection

As per the report of Basic Protection Audit carried out by CPRI and POWERGRID in 2012, non-availability/non-functionality of Bus Bar Protection at many of the S/S was one of the major observations.

19th PSC meeting on 21st November, 2012 - Action plan for rectification of deficiencies enumerated in the report was updated by the utilities during the meeting. This status has subsequently been revised based on information submitted by the utilities from time to time.

 20^{th} PSC meeting on 5^{th} April, 2013 – As per the decision taken in 83^{rd} OCC held on 17th January, 2013, it was agreed that each transmission and generation utility would nominate two protection experts and thereafter protection audit at intra-State sub-stations and generating stations can be carried out by a team drawn from these experts. List of nominations was prepared and updated subsequently.

 21^{st} PSC meeting on 25^{th} June, 2013 – Bus Bar Protection Status as available with NRPC secretariat was discussed in the form of tabled agenda item and utilities were requested to update the same with 15 days.

 22^{nd} PSC meeting on 22^{nd} July, 2013 – Information was not submitted by any of the utilities. Members were requested to update the status of Bus Bar Protection.

23rd PSC meeting on 9th September, 2013 – Only DTL, BBMB PSTCL, POWERGRID, NHPC and HPSEB Ltd. submitted the status. All other utilities were requested to update the status of Bus Bar Protection.

24th PSC meeting on 17th December, 2013 – Only DTL, BBMB PSTCL, POWERGRID, NHPC and HPSEB Ltd. had submitted the status. All other utilities were requested to update the status of Bus Bar Protection.

 25^{th} PSC meeting on 12^{th} February, 2014 – Immediate Alternative of Bus Bar Protection Scheme - RVPNL stated that in the Sub stations, where Bus Bar Protection Scheme was currently not available, time setting of bus coupler connected in between main Buses may be reduced to 100 ms (operating time) and reverse reach of feeders may be reduced to 2 km and with time of operation as 160 ms. With above settings, in case of actual Bus fault, bus coupler operation will isolate the faulty buses from other main buses and feeders will also trip. This operation will reduce the fault duration and the healthy buses will remain intact. PSC was of the view that scheme can be used purely as a temporary substitute till Bus Bar Protection is not installed. But at the same time, members expressed that endeavour should be made to operationalize Bus Bar Protection at the earliest.

 28^{th} PSC meeting on 19^{th} December, 2014 – Utilities were requested to expedite the implementation of Bus Bar Protection and submit the information.

 31^{st} PSC meeting on 7th June, 2016 – PSC expressed concern of nonfunctioning of Bus Bar Protection at many sub-stations in the region. It was decided that efforts would be made to expedite implementation of Bus Bar protection and submit the information to NRPC Sectt with progressive commissioning of Bus Bar protection.

Attention of members was also drawn towards deliberations in the 25th meeting of PSC held in Feb, 2014, wherein it was decided that as an interim arrangement an alternative to Bus Bar protection can be implemented. In this arrangement time setting of Bus coupler connected in between main Buses may be reduced to 100 ms (operating time) and reverse reach of feeders may be reduced to 2 km and with time of operation as 160 ms. With above settings, in case of actual Bus fault, Bus coupler operation will isolate the faulty Buses from other main Buses and feeders will also trip. This operation will reduce the fault duration and the healthy Buses will remain intact.

 32^{nd} PSC meeting on 30^{th} November, 2016 – UPPTCL stated that as agreed in 25th PSC meeting held in Feb, 2014, an interim arrangement alternative to Bus Bar protection has been implemented in some of their sub-stations. It was also informed that as normal operation has been reported, therefore, UP was planning to implement the same in other sub-stations. Delhi and Rajasthan also informed the similar action. It was felt that other states e.g. Haryana and Punjab may also implement the same as an interim measure till the bus -bar protection is installed. However, it was again emphasised that this would be a temporary arrangement only and must not be considered as an alternative to bus -bar protection.

 33^{rd} PSC meeting on 22^{nd} February, 2017 – PSC advised all the concerned utilities to make interim arrangement as decided in 32^{nd} PSC meeting, till the Bus bar protection is not installed.

 34^{th} PSC meeting on 4^{th} August, 2017- PSC advised to remove the alternate arrangement wherever Bus bar protection has been installed. UP has installed alternative schemes in almost all of the substations where Bus bar protection is installed. Rajasthan will start procurement after finalizing contract for implementation of Bus bar protection.

35th PSC meeting on 20th June, 2018 - Representative of UPPTCL Minutes of 37th Protection Sub-Committee (21st January, 2019) informed that alternated arrangements were removed in all the substations wherever a bus bar protection was installed.

 37^{th} PSC meeting on 21^{st} January, 2019 - Representative of Rajasthan informed that out of 74 locations where bus bar protection was to be installed 56 locations have been completed. He informed that installation at other locations is in process. (Annexure - V)

Utilities were requested to submit the updated status of Bus bar protection and the status of interim measures taken at their end.

A.8.7. CERC order on Petition No. 9/SM/2014 and 10/SM/2014

SE, NRPC stated that CERC in its order dated 14.06.2016 in Petition no. 9/SM/2014 for investigation of tower collapse and load crash in Northern Region on 30.5.2014 and Petition no. 10/SM/2014 for investigation of Line Outage due to Tower Collapse in Northern Region during April 2015 to June 2015 directed RPC Secretariat to examine the cases of delayed clearance of faults on transmission system during last two years and to submit an analysis report within six month from the date of issue of the order. The status of the delayed clearance of the fault from 01.04.2014 to 01.06.2015 was enclosed as Annex-VI of the agenda of 32nd PSC meeting. In the agenda following action was proposed:

• Utilities which had not submitted the detailed report along with the remedial measures taken/being taken were requested to submit the same.

• Utilities whosoever had submitted the report along with the measures to avoid the recurrences of these types of tripping were requested to submit the status of action suggested in report.

In the 32^{nd} PSC meeting, members were requested to submit the reason for delayed clearance of faults and action taken to avoid recurrence, by 15^{th} Dec, 2016 to NRPC Sectt.

Again in the 33rd PSC expressed concern over non-submission of data. Utilities were requested to furnish the information by 07.03.2017, so that the report may be submitted to CERC.

Subsequently, vide letter dated 10.07.2017, members of PSC were asked to submit the action taken on the recommendation of the discussions held in last 04 PSC meetings $(30^{th}, 31^{st}, 32^{nd}, 33^{rd})$ by 25.07.2017).

The issue was again flagged in 34th PSC meeting in which all the members agreed to submit the details as required. The status of details received is as given below:

Description	Information submitted by		
Details regarding Event List as mentioned at	UPPTCL (Central and East North		

Annex-VI to 34 th PSC Minutes (Reasons /Action	Zone), NJHPS, POWERGRID,
taken for Delayed Clearance of faults)	NHPC, DTL, RRVPNL
Action taken status on the recommendation of	BBMB, NHPC, POWERGRID
the discussions held in last 04 PSC meetings	(NR-2) and NAPS
(30 th , 31 st , 32 nd , 33 rd)	

36th **PSC** *meeting on 19th September, 2018--* Members were informed that list of events of delayed clearance of faults from 01.04.2014 to 01.06.2015 was already circulated but data has not been submitted by utilities. Utilities were requested to furnish the information as mentioned above at the earliest as the details need to be submitted to CERC.

In 40th TCC/43rd NRPC meeting held on 29th and 30th October, 2018- It was informed that list of delayed clearance fault was circulated again and again but data has been only received from the utilities mentioned above. He informed that partial information received till date was submitted to CERC as show cause notice was issued for non-submission of data in compliance of CERC order on Petition No. 9/SM/2014 and 10/SM/2014. He told that complete information would be submitted to CERC after receiving from utilities.

Utilities were requested to furnish the information as mentioned above at the earliest as the details need to be submitted to CERC.

A.8.8 General Recommendations/Best Practices in PSC meeting

In the 32nd PSC meeting it was deliberated that there is a need to keep the compilation of the general recommendations of the Protection Sub- Committee for reference. The compiled list of recommendations of PSC was circulated with the agenda of 33rd PSC meeting and also enclosed as Annexure – XII of 35^{th} PSC agenda.

Members were requested to adhere to these general recommendations and follow the best practices as suggested by PSC. Members were also requested to forward best practices in their utility or any other utility which can be adopted to include in this compilation.

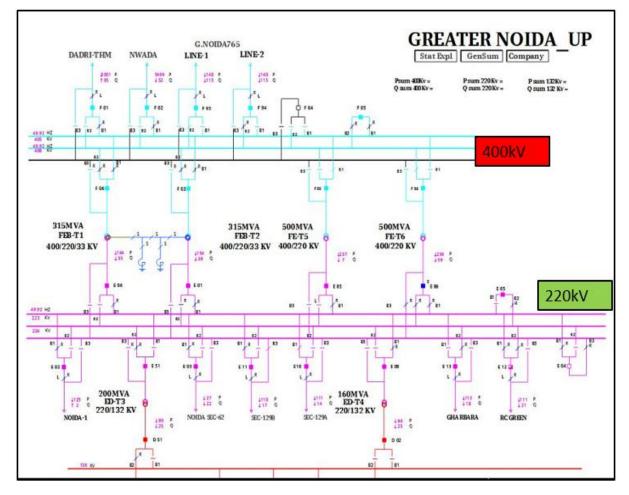
35th PSC meeting on 20th June, 2018 - It was informed that list of general recommendations was formed considering best practices as suggested by PSC but it has been observed that these practices were not being implemented. All the utilities were requested update the status regarding actions taken to adhere these general recommendations.

In 36th PSC meeting on 19th September, 2018 - Representative of NRLDC stated that during the deliberations in PSC meetings if any recommendation was recurring, then it was considered as general recommendation by PSC to be adhered by utilities. It has been observed that these recommendations were not followed by utilities and tripping due to same reason have been noticed. He insisted that utilities should adhere with these

recommendations. Utilities were also requested to share any frequent cause of tripping, maloperation observed due to particular setting or any input beneficial for other utilities so that these recommendations could be expanded.

In 40th TCC/43rd NRPC meeting held on 29th and 30th October, 2018- It was informed that compiled list of recommendations of PSC was circulated as General recommendations/Best Practices in PSC meetings. Utilities were requested to adhere to these general recommendations and to forward best practices in their utility which can be adopted to include in this compilation. It was informed that compendium of all the best practices would be made and same could be followed by the region as whole which might help in mitigating instances of mal-operation/mis-operation.

All the utilities were again requested to submit the updated status regarding actions taken to adhere these general recommendations.

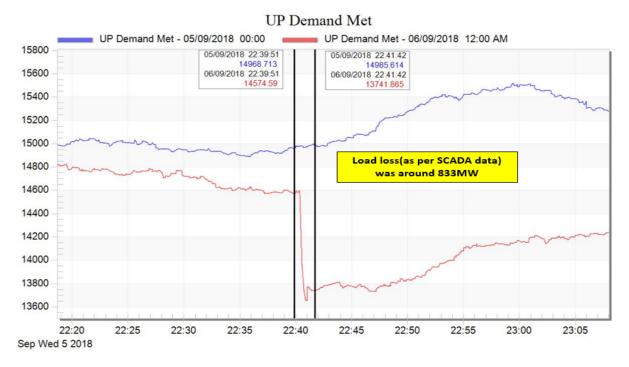

1. Complete outage of 400/220 kV G. Noida (UP) on 06 Nov 2018 at 22:40hrs (Discussed in 151st OCC meeting):

As reported by UP SLDC, conductor of R phase 400 kV Bus-A got broken at 400/220 kV G. Noida leading to 400 kV bus-bar fault at 400/220 kV G. Noida (UP). 400 kV bus bar protection did not operate at 400/220 kV G. Noida (UP). It was found that none of the breaker opened from 400 kV G. Noida (UP) end.


All the 400 kV connected lines from 400/220 kV G. Noida (UP) lines tripped from remote end. This resulted in loss of approx. 800-900 MW and frequency increasing from approx. 49.91 Hz to 50.12 Hz (thus a jump of approx. 0.11 Hz). After the tripping the line loading on remaining lines remained within limits.

As reported by NTPC Dadri, Vibration more 200 microns also sensed in Dadri stage-2 units.

400/220 kV G. Noida (UP) station is an important load feeding station in Delhi NCR with 1630MVA (2*315MVA+2*500MVA) capacity. Connectivity Diagram is as below:


As per PMU data maximum dip in R-phase and fault clearance time was ~400ms. Delayed clearance of fault as per PMU data. PMU plot of phase voltages of Ballabhgarh (PG) is as below:

AS per PMU plot of frequency, it seems load loss occurred in the system.

As per SCADA data, load loss of around 830 MW observed in UP demand met. As informed by UP, Sector-62 Noida is further connected in the Grid through 400kV Indirapuram. All other 220 kV feeders and downward ICTs at 400/220kV G. Noida feed the radial load. SCADA data plot is as below:

As per SCADA SoE:

- 400 kV Dadri-G. Noida ckt tripped immediately from Dadri (NTPC) end. No breaker opened at 400/220 kV G. Noida end.
- Tripping also occurred at 400 kV G. Noida (765/400 kV)-G. Noida (400kV) ckt-1 & 2 from 400 kV G. Noida (765/400 kV) end. 765/400 kV 1500MVA ICT-1 also tripped at 765/400 kV G. Noida (UP).
- It seems time synchronization error in the reporting of SoE of 765/400 kV G. Noida (UP) and 400 kV Nawada (Haryana)

Time	S/S name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks	Comment
22:20:48,354	NAWADA	400kV	4GNODA1	Circuit Breaker	Open	Time Synch error	Main CB of 400kV Nawada(end)-Greater Noida opens
22:40:09,160				As p	er PMU dat	а	
22:40:09,165	DADRI (Thermal)	400kV	20GN1MA2	Circuit Breaker	Open		Tie CB of 400kV Dadri(end)-Greater Noida & 400kV Dadri(end)-Mandola ckt-2 opens
22:40:09,212	DADRI (Thermal)	400kV	21GNODA1	Circuit Breaker	Open		Main CB of 400kV Dadri(end)-Greater Noida opens
22:40:37,000	GNOD7_U	400kV	403T1	Circuit Breaker	Open		400kV side main CB of 1500 MVA ICT 1 765kV Greater Noida opens
22:40:37,000	GNOD7_U	765kV	701T1	Circuit Breaker	Open		765kV side main CB of 1500 MVA ICT 1 765kV Greater Noida opens
22:40:37,000	GNOD7_U	400kV	402T1T3	Circuit Breaker	Open		400kV side tie CB of 1500 MVA ICT 1 765kV Greater
22:40:37,000	GNOD7_U	765kV	702AGRT1	Circuit Breaker	Open	-	765kV side tie CB of 1500 MVA ICT 1 765kV Greater
22:40:37,000	GNOD7_U	400kV	415GNDA2	Circuit Breaker	Open	Time Synch error	Main CB of 400kV Greater Noida(765kV)(end)-Greater noida(400kV) ckt-2 opens
22:40:37,000	GNOD7_U	400kV	418GNDA1	Circuit Breaker	Open	enor	Main CB of 400kV Greater Noida(765kV)(end)-Greater noida(400kV) ckt-1 opens
22:40:37,000	GNOD7_U	400kV	414SPGD2	Circuit Breaker	Open		Tie CB of 400kV Greater Noida(765kV)(end)-Greater noida(400kV) ckt-2 opens
22:40:37,000	GNOD7_U	400kV	417SPGD1	Circuit Breaker	Open		Tie CB of 400kV Greater Noida(765kV)(end)-Greater noida(400kV) ckt-1 opens

UPPTCL representative informed that R-phase pantograph isolator assembly of 400 kV G. Noida (end)-Dadri ckt got snapped and fell down causing 400 kV bus fault at 400 kV G. Noida (UP) station. 400 kV bus *Minutes of* 37^{th} *Protection Sub-Committee* (21^{st} *January*, 2019) bar protection was not operated and all the 400 kV connected elements tripped from remote end in Z-2 distance protection operation. Further during investigation, it was found that only one source of 220 Volt DC was available for bus bar protection panel and positive fuse of this DCDB source-2 was found blown off resulting into 220V DC supply failure to 400 kV bus bar protection panel and 400 kV bus bar protection failed to operate.

Remedial Measures (As per UPPTCL report):

- In order to avoid any such incident in future both 400 kV and 220 kV bus bar protection relays have been fed with double DC source from DCDB independently along with DC supervision relay for both the DC supply of the bus bar protection relays. Both the DC supply to the bus bar protection relays and its DC supervision relays have been tested and found in order. Later bus bar protection put back into service.
- Testing of 400 kV bus bar protection at 400 kV G. Noida (UP) to be done.
- Testing of protection of 1500 MVA ICT-I at 765 kV G. Noida S/S.

NRLDC representative also raised the concern of outage of entire substation in 400 kV Delhi ring being a serious operational issue and any further tripping could result into disturbance propagating to larger area.

MS, NRPC also raised concern for non-operation of bus bar protection at important station of 400 kV G. Noida (UP) near Delhi control area and suggested for further detailed investigation of the incident and submit the report of the incident.

NRLDC representative informed that if there is time delay in fault clearance than there may be failure of primary protection, delay in protection operation or operation of secondary/back up protection. Intended function of protection system may not be operated. As per CEA Regulation fault clearance time is 100ms and 160ms for 400 kV & 220 kV system respectively.

UPPTCL representative informed that

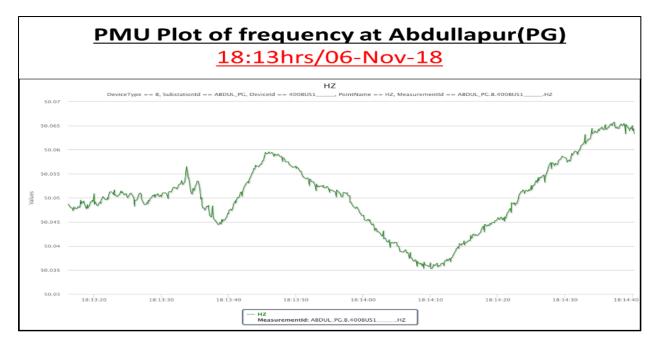
- During the incident actual R-phase conductor got damage and snapped in the 400 kV switchyard resulted into bus fault at 400 kV G. Noida (UP) station.
- At the time of commissioning of SEL make bus bar protection, one DC supply source was provided as per approved drawing scheme of bus bar protection and this scheme is implemented at five 400 kV station in UP.
- Bus Bar Scheme (SEL make) with single DC source has been revised at 400 kV G. Noida (UP) and other four 400 kV station (Muzaffarnagar, Muradnagar). At present Bus Bar Protection has supply with double DC source.
- Only DC supply to the bus bar protection was under outage due to DC supply fuse failure. DC supervision relay was also found in damage condition. DC supervision relay has been restored and wired for alarm in the control room.
- Only One numerical bus bar differential protection implemented at all five 400 kV station. Redundancy is not available for bus bar differential protection.

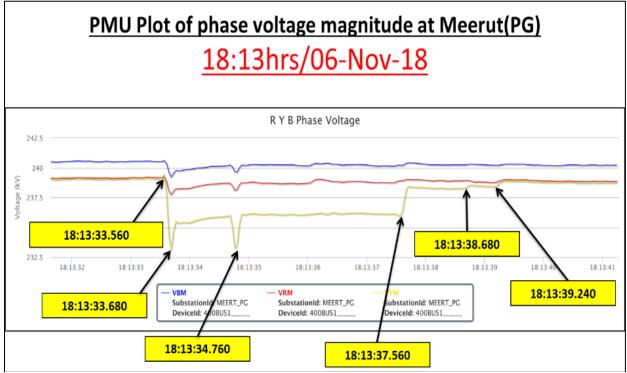
NRLDC representative further suggested all the utilities to kindly make redundancy in bus bar protection at 400 kV voltage level.

POWERGRID and Punjab also informed that redundancy in bus bar protection is available at all 400 kV station.

Following points further agreed during PSC meeting:

- Remedial measures report considering the action points approved in OCC meeting to be submitted by UPPTCL/ Haryana/ NTPC. Action points are once again tabulated below:
 - Outage of entire substation in 400 kV Delhi ring is a serious operational issue and any further tripping could result into disturbance propagating to larger area and therefore, safeguards by way of protection system improvement need to be expedited.


- Healthiness of 400 kV Bus bar protection at 400/220 kV G. Noida (UP) station needs to be ensured. 400 kV bus bar protection shall be tested within 7days and submit the report to NRPC/ NRLDC. (Action: Uttar Pradesh; Time Frame: 7days)
- DC supply supervision relay and its alarm to be wired in control room and shall be visible to the control room operator. If DC supply failure alarm came into the system same needs to be attended on priority basis within 24hrs.
- Instantaneous tripping of 400 kV Dadri-G. Noida ckt from Dadri end needs to be looked into as fault was in Z-2 from Dadri end. (Action: NTPC; Time Frame: 7days)
- Tripping of 1500MVA 765/400 kV ICT-1 at 765/400 kV G. Noida (UP) needs to be checked and corrected. Protection Co-ordination of 1500MVA ICT with 400 kV G. Noida (765/400kV)-G. Noida (400/220kV) ckts also to be checked. (Action: Uttar Pradesh; Time Frame: 15days)
- Time synchronization of SCADA SoE of 765/400 kV G. Noida (UP) and Nawada (Haryana) to be checked and corrected. (Action: Haryana and UP; Time Frame: 15days)
- Redundant bus bar differential protection shall be provided at all 400 kV sub-station. (General Recommendation; Action: All NR constituents)
- Approved general recommendation of NRPC shall be strictly followed by all the NR constituents.


2. Tripping of all 400kV elements at 400/220kV Aligarh(UP) (Discussed in 153rd & 154th OCC meeting):

NRLDC representative stated the following as per gathered information:

- 400 kV Aligarh (UP) is connected with Mainpuri D/C, Sikandrabad D/C, Muradnagar S/C, Panki S/C and two 500MVA 400/220 kV ICT's. It has one and half breaker scheme.
- Y-N fault occurred resulted in tripping of all 400kV ckts from Aligarh(UP) along with both 400/220kV ICTs. 400kV Muradnagar-Ataur, 765/400kV ICT #1 at Mainpuri (UP) and 400kV Sikandrabad-G.Noida both ckts also tripped. 400kV Sikandrabad-Aligarh hand tripped.
- Line fault in 400 kV Aligarh-Muradnagar ckt, during fault main and tie CB both were in service. During fault, tie CB tripped but main CB didn't trip at Aligarh (UP) end. It further resulted into LBB operation but bus bar protection at 400 kV Aligarh (UP) was not healthy thatswhy all the elements tripped from remote end of the Aligarh (UP). It resulted into delayed clearance of fault.
- 400 kV Sikandrabad- G. Noida ckt-1 & 2 tripped on DT received at Sikandrabad end. It
 occurred due to spurious pulse generated from telecom panels. Further, it is observed
 that certain control cables are getting earthed and causing DC leakage. (Remedial
 measures taken: arrested the DC leakage and replaced the faulty cables).
- 400 kV Mainpuri-Aligarh ckt-1 & 2 tripped from Mainpuri end:- distance Z-3 protection operated.
- 765/400 kV 1500MVA ICT at Mainpuri (UP) also tripped:- directional earth fault over current protection.
- 400/220 kV 500MVA ICTs at Aligarh (UP) end tripped on back up over current earth fault protection.
- As per PMU, fault cleared in 4000ms. As per NRLDC SCADA SoE, elements tripped in sequential manner in around 5000ms.

A preliminary report of the event has been issued from NRLDC. The PMU plot and NRLDC SCADA SoE are as follows:

		Voltag		Protection/			Reference
Time (hrs)	Station	e (kV)	Element	Device	Status	Remarks	Time
18:13:33.560	B-N fault occ	curred	as seen from P	MU data.			0ms
18:13:33,697	ALIGR_UP	400	LIMUR1N	Protection Trip	Арр	Aligarh-Muradnagar	
						opened from Aligarh	190ms
18:13:33,750	ALIGR_UP	400	02TIE	Circuit Breaker	Open	end	
						Aligarh-Muradnagar	
	MURADNGR					closed from	910ms
18:13:34,472	-1	400kV	F_03(PANK1)	Circuit Breaker	Close	Muradnagar end	
18:13:34,862			LIAT1	Protection Trip	Арр	<u> </u>	
18:13:34,904			03AT1	Circuit Breaker	Open	765/400kV ICT #1 at	
18:13:34,906			03T1	Circuit Breaker	Open	Mainpuri(UP) tripped	1345ms
18:13:34,907			02T1ORI	Circuit Breaker	Open		
10.13.34,307		400	02110101		open	Muradnagar-Ataur	
	MURADNGR					opened from	1410ms
18:13:34,973		10061		Circuit Breaker	Open	Muradnagar end	1410113
18.13.34,373	-T	40080	F_01(IVIOZAT)	BusBar Isolator	Ореп		
18:13:35,104		122141	D 03(DEOBD)		Close		1545ms
10.15.55,104	SHANN_UP	19280		2	CIUSE	Muradnagar-Ataur	
						e e	1600mc
10.12.25 101		400			0	opened from Ataur	1600ms
18:13:35,161	_		04MUR1N	Circuit Breaker	Open	end	
18:13:36,022			LIT1	Protection Trip	Арр	-	
18:13:36,068	_		LIT2	Protection Trip	Арр	400/220kV ICT #1 at	2550ms
18:13:36,082	_		09T1	Circuit Breaker	Open	Aligarh tripped	
18:13:36,090	_		08TIE	Circuit Breaker	Open		
18:13:36,109	ALIGR_UP	220	04T1	Circuit Breaker	Open		
						Aligarh-Muradnagar	
	MURADNGR					opened from	2555ms
18:13:36,113		400kV	F_03(PANK1)	Circuit Breaker	Open	Muradnagar end	
18:13:36,130	ALIGR_UP	400	21T2	Circuit Breaker	Open		
18:13:36,140	ALIGR_UP	400	20TIE	Circuit Breaker	Open	400/220kV ICT #2 at	2595ms
18:13:36,152	ALIGR_UP	220	10T2	Circuit Breaker	Open	Aligarh tripped	
18:13:36,447	MANP1_U	400	LIALGRH1	Protection Trip	Арр		
18:13:36,479	MANP1_U	400	08ALMNP1	Circuit Breaker	Open	Alizzah Masimumi 1	
18:13:36,480	ALIGR UP	400	LIMANP71	Protection Trip	Арр	Aligarh-Mainpuri-1	2000
18:13:36,481	MANP1 U	400	09ALIGRH	Circuit Breaker	Open	tripped from both	2980ms
18:13:36,519			10MANP71	Circuit Breaker	Open	ends	
18:13:36,541	_		11TIE	Circuit Breaker	Open		
18:13:37,531			LIMANP72	Protection Trip	Арр	Aligarh-Mainpuri-2	
10.10.07,001	<u>ALIGN_01</u>	100			, , p p	opened from Aliagarh	
						end. Fault cleared as	3970ms
18:13:37,572		400	07MANP72	Circuit Breaker	Open	per PMU data.	
10.10.07,072			07 WI/AN / Z	en cure bi caker	open	Panki-Aligarh opened	
18:13:38,446		10041		Circuit Breaker	Open	from Panki end	4885ms
			08SIKND1	Circuit Breaker	· ·	Sikandrabad(400)-	
18:13:38,521		ZZUKV	UOSIKINDI	Circuit Breaker	Open		
						Sikandrabad D/C	4990ms
10,12,20 540		22014		Circuit Decales	Onen	opened from	
18:13:38,549	SKINDU_UP	ZZUKV	09SIKND2	Circuit Breaker	Open	sikandrabad end	

Extract of report received from UPPTCL:

On 06.11.2018 at 18:13Hrs. 400KV ICT - 1 & II and 400KV lines tripped. Normalization time of the elements is mentioned below:-

SI. No.	Name of Element	Date & time of Normalization		Remark
1.	400KV Aligarh – Mainpuri Ckt. – I	06.11.18	20:31	
2.	400KV Aligarh – Mainpuri Ckt. – II	06.11.18	20:33	
3.	400KV Aligarh – Muradnagar	06.11.18	20:44	
4.	400KV Aligarh – Panki	06.11.18	20:49	
5.	400KV Sikandrabad – I	06.11.18	21:20	
6.	400KV Sikandrabad – II	0611.18	20:59	
7.	500MVA ICT I (400/220KV)	06.11.18	21:36	
8.	500MVA ICT II (400/220KV)	06.11.18	21:19	
9.	400KV Muradnagar – Atour	06.11.18	19:04	
10.	400KV Muradnagr – Aligarh	06.11.18	20:43	
11.	400KV Sikandrabad – Greater Noida – I	06.11.18	19:32	
12.	400KV Sikandrabad – Greater Noida – I	06.11.18	19:37	

Analysis report of the tripped elements, single line diagram, flags of the relevant portion of the grid is enclosed at annexure.

Analysis:-

As reported by UPPTCL line fault occurred on 400KV Aligarh – Muradnagar line, during fault Main & tie CBs were in service. Tie CB tripped but Main CB did not trip at 400KV Aligarh S/S. Due to defective Bus bar protection at Aligarh all lines tripped at other end. Causing delayed fault clearance of around 4000msec.

Remedial Measures taken/to be taken:-

Bus bar protection should be rectified at the earliest. Thorough testing of 400/220KV Aligarh S/S is required.

* Aau

-		Sec. is				ARH (ET&C DIVISION ALIGA		Data DE las Incas															
S. No.	Tripping Date/Time	Closing Date/Time	Name of Substation	CB. No. With Direction	Type of Relay	Flags & Indication Observed	F/L Km	Date 06/11/2018 Analysis															
1	2	3	4	5	6	7	8																
1	06.11.18	06.11.18	400KV Aligarh	Mainpuri-I	Micom/Siemens	DT Receive,	-																
1	18:13	20:29	765KV Mainpuri	Aligarh-1	ABR/Micom	DT Receive	-																
2	06.11.18 18:13	06.11.18	400KV Aligarh	Mainpuri-II	Micom/Siemens	DT Receive	-																
-	00.11.18 10.15	20:32	765 KV Mainpuri	Aligarh-II	ABB/Micom	DT Receive, Zone-3,	-																
	06.11.18	06.11.18	400KV Aligarh	Panki	ZIV/Micom	No Flag, CB Not Open	-	400kv Aligarh-Muradnagar															
3	CB not opened	20:49	400KV Panki	Aligarh	Siprotech	Y-N,Zone-3	Dist=498 Km																
4	06.11.18 CB not opened		400KV Aligarh	Muradnagar	ZIV/Micom	Y-N,Zone-1,2,3 Fault Current Ir=0.212A,Iy=2.877A,Ib=0. 102A	Dist=70.99 Km	Line, but at Aligarh end, relay sensed, Tie CB opened but main CB not opened, due to which															
																				400KV Murad Nagar	Aligarh	ALSTOM	Zone-1 Phase B-N, Dist=92.58 Km
	06.11.18 CB	06.11.18	400 KV Aligarh	Sikandrabad-1	ZIV/Micom	No Flag,	-	breaker scheme. Bus Bar															
5	not opened	21:00	400KV Sikandrabad	Aligarh-I	Micom/ABB	No Flag		Protection system is kept out of service as it is															
6	06.11.18	06.11.18	400KV S/S Aligarh	Sikandrabad-II	ZIV/Micom	No Flag	•	defective.															
	CB Not Opened	20:57	400KV Sikandrabad	Aligarh-II	Micom/ABB	No Flag																	
7	06.11.18 18:13	06.11.18 21:26	400 KV S/S Aligarh	500 MVA T/F-I	ZIV/Micom	Tripped HV LV side CB	¥.,																
8	06.11.18 18:13	06.11.18 21:19	400KV S/S Aligarh	500 MVA T/F- II	ZIV/Micom	O/C, E/F, Tripped HV LV side CB	*																

UPPTCL representative further informed that 400 kV bus bar protection at 400 kV Aligarh (UP) is defective. Issue has been taken up with OeM and would be resolved as soon as possible.

NRLDC representative further added that delayed clearance of fault of 4000ms as against the standard of 100ms is very alarming and it shows the failure of multiple layer of protection system. In this case if bus bar protection was not in service than reverse zone protection should have cleared the fault within 500ms or Z-2 from remote end should have cleared the fault. However, fault persisted for 4000ms and further resulted into tripping of 765/400 kV ICT at nearby station of Mainpuri (UP). 400 kV G.Noida-Sikandrabad ckt-1 & 2 also tripped during the fault on spurious DT signal received at Sikandrabad end. Signal was not generated at G. Noida end. It is also serious cause of concern and needs to be addressed immediately.

An event of such magnitude wherein forced outage of elements occurred at complete voltage level of a station may affect the safety and security of the grid. Further, delayed clearance of 4000ms as against the standard of 100ms is also very alarming and indicate towards an immediate and in depth analysis. UP was requested to look into the event and send a report on above points, take remedial measures to avoid such incidents in future.

UPPTCL representative informed that

• Main CB of 400 kV Aligarh (end)-Muradnagar ckt was not opened due to breaker lockout. Breaker lockout position was due to less air pressure in the breaker and same was over looked by the operator.

- ZIV make LBB/ Bus Bar (distributed) Protection at Aligarh station was out of service. UPPTCL already contacted CGL twice but service engineer couldn't sort out the problem in the relay. Reverse zone setting at 400 kV Aligarh end revised to 100ms.
- ZIV make distributed bus bar protection is available at 400 kV Aligarh (UP). In case of communication issue with particular bay, bus bar protection blocked and send the tripping command to concerned bay (communication broke). This issue was still persisted thatswhy bus bar protection taken under outage. On this particular issue POWERGRID representative informed that it depends on configuration in the relay. In POWERGRID such type of configuration is not available.
- 400 kV Sikandrabad end didn't trip thatswhy lines tripped from 400 kV G.Noida end.

NRPC representative further suggested that revising the reverse zone setting is helpful for DMT scheme. It is not much useful in case of one an half breaker scheme.

NRLDC representative raised concern about following points:

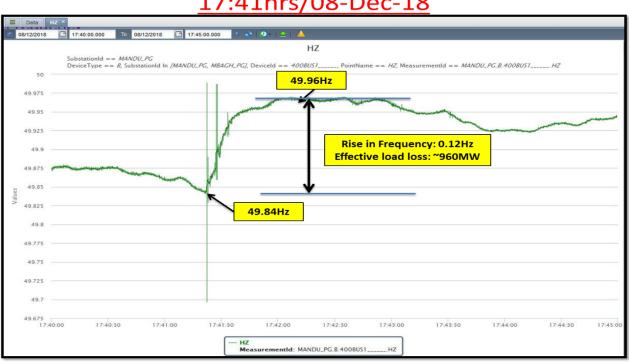
- Mechanical problem in the main breaker of 400 kV Aligarh (end)-Muradnagar ckt. What is the status of breaker maintenance?
- Outage of LBB/ Bus Bar Protection at 400 kV Aligarh (UP) and restoration time for the same.
- Distance zone-2/zone-3 setting at remote end of 400 kV Aligarh (UP) to be checked and corrected.
- If fault current was very less, DEF (Directional earth fault) protection setting in the 400kV line needs to be checked and corrected.
- Protection Co-ordination of 765/400 kV ICT, 400/220 kV ICTs with respective transmission line.
- Delayed clearance of fault of 4000ms as against the standard clearance time of 100ms.

An event of such magnitude wherein forced outage of elements occurred at complete voltage level of a station may affect the safety and security of the grid. A further, delayed clearance of 4000ms as against the standard of 100ms is also very alarming and indicates towards an immediate and in depth analysis. But Detailed analysis is still pending from UPPTCL.

NRPC raised concern about non-submission of complete information about the incident and further remedial measures yet to be identified by UPPTCL. Internal Protection Audit for 400 kV Aligarh (UP), Sikandrabad (UP) and 765/400 kV Mainpuri (UP) was recommended by NRPC on 20-21st Feb 2019. UPPTCL shall share the report of the protection audit with NRPC/ NRLDC.

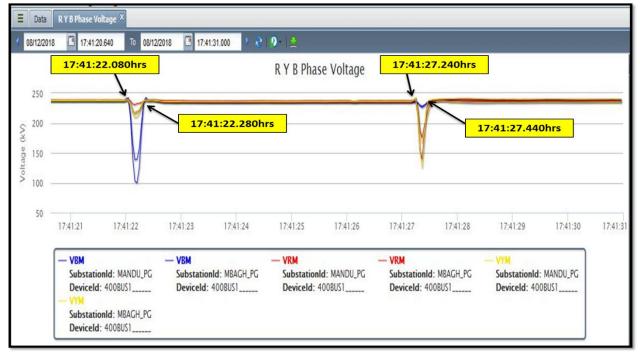
NRPC suggested UPPTCL to kindly also look into the following point during protection audit:

- Exact reason and location of fault
- Delayed clearance of fault of around 4000ms
- Simultaneous tripping of multiple elements within 5 seconds of fault
- Status of tripping of 220kV feeders at Aligarh to be confirmed as per SCADA SLD, power flow is observed in the 220kV ckts
- Reason of outage of bus bar protection at Aligarh (UP) and remedial measures taken. (Intimation to RPC/ RLDC about outage of bus bar protection??)
- Non operation of reverse zone protection for outgoing lines from 400 kV Aligarh (UP) needs to be looked into.
- Reason for tripping of 400kV Sikandrabad(UP)-G.Noida(UP) ckts as well as all other elements
- Review of settings of ICTs at Aligarh and Mainpuri
- Explanation for sequential tripping of elements as tabulated in attached NRLDC SoE data
- DR/EL, Report along with remedial measures taken to be shared covering above points.

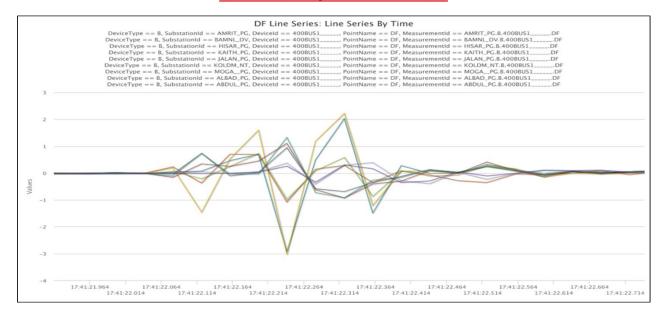

Operator needs to be sensitized for alarm related to breaker lockout, any protection outage, DC supervision relay etc and same shall be reported to concerned engineer. (General Recommendation)

3. Multiple element tripping at 400 kV Dadri TPS and tripping of HVDC Rihand-Dadri Pole-2 (Discussed in 154th OCC meeting):

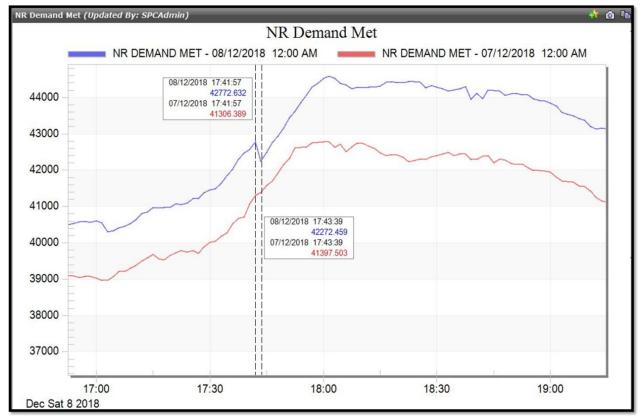
NRLDC representative stated the following:

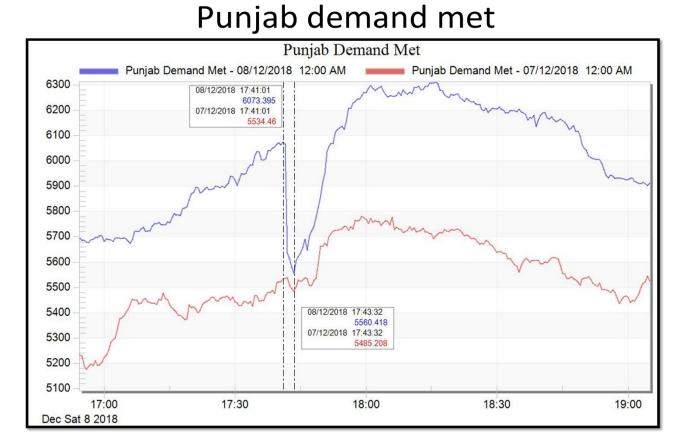

- As reported, B-N (LG fault) fault followed by R-Y phase to phase ground fault (LLG fault) occurred very near to gantry of the Dadri end of 400 kV Dadri-G. Noida line and Dadri-Maharani Bagh line on 08th December 2018, at 17:41:22 and 17:41:27 Hrs respectively.
- In antecedent condition 400 kV Maharani Bagh-Ballabhgarh ckt and G. Noida-Nwada ckt was already under shutdown and 400 kV Dadri-G. Noida ckt was in Non-auto mode due to ongoing work on OPGW wire.
- At 17:41:22hrs, 400 kV Dadri-G. Noida ckt tripped. Z-3 start in 400 kV Dadri-Maharani Bagh and Z-2 start in 400 kV Dadri-Mandaula ckts.
- At 17:41:27hrs, 400 kV Dadri-Maharani Bagh ckt tripped. Along with Dadri-Maharani Bagh, 400 kV Dadri-Mandaula ckt-1 & 2 also tripped.
- HVDC Rihand-Dadri Pole-2 also blocked on excessive delay angle protection. (protection send blocking command if alpha angle is more than 40 degrees for 10 second or more)
- Because of blocking of Pole-2, HVDC Rihand-Dadri SPS case-2 (load reduction more than 500 MW) also operated and resulted into load shedding in C& D load group.
- In Punjab, rate of change of frequency (RoCoF) protection operated and resulted load shedding in Punjab control area. (more than 500MW load loss on account of SPS and df/dt operation)
- In recent past, number of tripping has increased due to snapping of OPGW wire or during maintenance of earth wire/ OPGW wire. Utilities shall take special precautions in this regard.
- Shutdown of 400 kV Maharani Bagh-Ballabhgarh ckt and 400 kV G.Noida-Nwada was extended for more than 22 days from its approved time. It is serious cause of concern and NRLDC already wrote a letter to POWERGRID.
- Load relief for load group C&D in case of SPS operation of HVDC Rihand-Dadri Pole-II was very low compare to planned load shedding of 520MW.
- Unwanted operation of RoCoF protection in Punjab is cause of concern as it is a clear failure of last defence mechanism.

The PMU plot and NRLDC SCADA data and SoE are as follows:



PMU Plot of frequency at Mandaula(PG) 17:41hrs/08-Dec-18

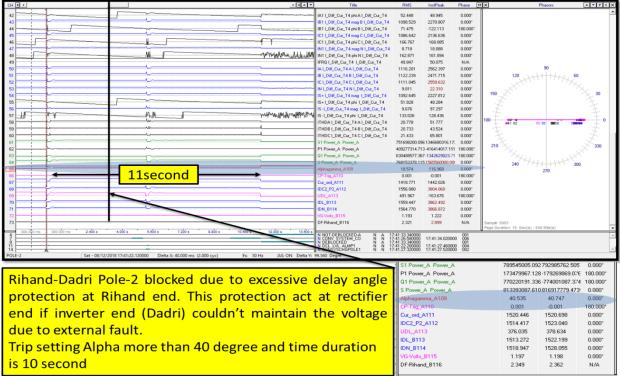

PMU Plot of phase voltage magnitude at Maharani Bagh(PG) <u>17:41hrs/08-Dec-18</u>



PMU Plot of df/dt 17:41hrs/08-Dec-18

NR demand met

Time	Station Name	Voltage Level (in kV)	Element Name	Element Type	Status
17:41:12,408	DADRI (TH)	400kV	21GNODA1	Circuit Breaker	Open
17:41:12,408	DADRI (TH)	400kV	20GN1MA2	Circuit Breaker	Open
17:41:17,589	DADRI (TH)	400kV	24HARSH2	Circuit Breaker	disturbe
17:41:17,608	DADRI (TH)	400kV	23MB1HR2	Circuit Breaker	Open
17:41:17,613	DADRI (TH)	400kV	22MBAGH1	Circuit Breaker	Open
17:41:23,054	PREET_D	220kV	07T2	Protection Trip	Арр
17:41:23,054	PREET_D	33kV	13T2	Circuit Breaker	Open
17:41:23,055	PREET_D	220kV	07T2	Circuit Breaker	Open
17:41:23,173	DADRI (TH)	400kV	BB2	Loss Of Voltage	Disp
17:41:26,126	DADRI_UP	132kV	D_03(DADRI-1)	Circuit Breaker	Open
17:41:27,326	MANDAULA	400kV	21DTHM1	Circuit Breaker	Open


Constituent Details are as follows:

Vibration details of Dadri stage-II units

Record of Dadri Unit Vibrations with Fault in the system												
	Date	Time	Line Tripped	Max. Voltage Dip (PMU/ DR details)	Nature of fault	Generation		Unit Displacement(in micron)				
S.No.						Unit-5	Unit-6	Unit-5		Unit-6		
24	08.11.2018	17:01 hrs	NO Line Disturbance Found	Not triggered			287			6Y- 26 to 130	7X 171 to 235	
25	26.11.2018	1.55 hrs	Dadri -Greater noida line & Panipat 2 line tripped	Not triggered		310	309	6Y 14 to 71	6Y 28 to 108	6Y- 26 to 82	6X 28 to 103	
26	27.11.2018	20:39:15 hrs	NO Line Disturbance Found				446			7Y- 30 to 114	7X 171 to 240	
27	04.12.2018		Dadri-Panipat-1 & 2			300	288	6X 17 to 41	6y 29 to 47	6Y- 25 to 59	6X 28 to 70	
28	08.12.2018	17:41	Greater Noida & Maharani bagh line tripped			396	416	6X 75 to 192	6y 39 to 190	6Y- 82 to 186	6X 185 to 207	

		UNIT#5		UNIT#6					
BUS VOLTAGE	Field current	STATOR CURRENT	STATOR VOLTAGE	BUS VOLTAGE	Field current	STATOR CURRENT	STATOR VOLTAGE		
431 to 345 kv	1998 to 1792 amp	8.4 to 11.6 KA	21.2 to 19.3kv	426 to 350kv	1437 to 1339amp	8.45 to 13.14KA	21.08 to 19.95 kv		
				NO CHANGE		NO CHANGE	NO CHANGE		
				NO CHANGE	1255 to1343	NO CHANGE	NO CHANGE		
415 to 398kv	3429 to 2822amp	10.91 to 13.50KA	17.84 TO 21.67kv	414 to 191kv	2120 to 977amp	11.69 to 16.15KA	21.18 to 20.01		

DR of HVDC Rihand (end)-Dadri Pole-2

EL of HVDC Rihand (end)-Dadri Pole-2

TIME	EVENT	
8-12-2018 17:41:28.842	10.078 KPP.11, P1 PC, RUNCBACK CONTROL, RUNBACK LIMIT ACTIVATED 5487/5512	-WARN OFF
8-12-2018 17:41:28.861	20.078 KPP.21, P2 PC, RUNCBACK CONTROL, RUNBACK LIMIT ACTIVATED 9487/9512	-WARN OFF
8-12-2018 17:41:28.947	10.087 MA.11, P1 TFR, TRANSIENT FAULT RECORDER MA.11 TRIGGERED 5487/5910	-MINOR OFF
8-12-2018 17:41:28.985	20.087 MA.21, P2 TFR, TRANSIENT FAULT RECORDER MA.21 TRIGGERED 9490/9910	-MINOR ON
8-12-2018 17:41:29.197	10.087 MA.11, P1 TFR, TRANSIENT FAULT RECORDER MA.11 TRIGGERED 5487/5910	-MINOR ON
8-12-2018 17:41:30.735	20.087 MA.21, P2 TFR, TRANSIENT FAULT RECORDER MA.21 TRIGGERED 9490/9910	-MINOR OFF
8-12-2018 17:41:31.734	21.043 KPB.21, P2 CC-A CP-B, EXC DEL ANGLE PROT, CHANGEOVER 10176/10240	-MINOR ON
8-12-2018 17:41:31.738	21.076 KPB.22, P2 CC-A, CONVERTER CONTROL OTHER SYSTEM ACTIVE 10179/10274	-SET
8-12-2018 17:41:31.738	22.076 KPB.25, P2 CC-B, CONVERTER CONTROL OTHER SYSTEM ACTIVE 10379/10474	-RESET
8-12-2018 17:41:31.808	22.043 KPB.24, P2 CC-B CP-B, EXC DEL ANGLE PROT, CHANGEOVER 10376/10440	-MINOR ON
8-12-2018 17:41:31.843	21.043 KPB.21, P2 CC-A CP-B, EXC DEL ANGLE PROT, CHANGEOVER 10176/10240	-MINOR OFF
8-12-2018 17:41:32.827	10.087 MA.11, P1 TFR, TRANSIENT FAULT RECORDER MA.11 TRIGGERED 5487/5910	-MINOR OFF
8-12-2018 17:41:33.088	30.053 KB.11, BC-A, VOLT & REAC POWER CONTROL ALARM (MON-1) 4512.6/3388	-MINOR ON
8-12-2018 17:41:33.112	30.069 KB.12, BC-B, BIPOLE CONTROL-B ACTIVE 4512.8/3656	-RESET
8-12-2018 17:41:33.113	30.057 KB.11, BC-A, BIPOLE CONTROL-A ACTIVE 4512.6/3656	-SET
8-12-2018 17:41:33.148	30.044 KB.12, NO BIPOLE CONTROL SYSTEM STANDBY 4512.4/3656	-MINOR ON
8-12-2018 17:41:33.150	30.044 KB.12, NO BIPOLE CONTROL SYSTEM STANDBY 4512.4/3656	-MINOR OFF
8-12-2018 17:41:33.152	30.044 KB.12, NO BIPOLE CONTROL SYSTEM STANDBY 4512.4/3656	-MINOR ON
8-12-2018 17:41:33.154	30.044 KB.12, NO BIPOLE CONTROL SYSTEM STANDBY 4512.4/3656	-MINOR OFF
8-12-2018 17:41:33.157	30.044 KB.12, NO BIPOLE CONTROL SYSTEM STANDBY 4512.4/3656	-MINOR ON
8-12-2018 17:41:33.312	22.044 KPB.24, P2 CC-B CP-B, EXC DEL ANGLE PROT, Y-BLOCK 10376/10440	-EMERGN ON
8-12-2018 17:41:33.340	41.143 BLOCK INDICATION POLE-2	-EMERGN ON
8-12-2018 17:41:33.341	10.104 KPP.11, P1 PC, PPC CURRENT ORDER LIMITED	-MINOR ON
8-12-2018 17:41:33.343	41.144 DEBLOCK INDICATION POLE-2	-RESET
8-12-2018 17:41:33.372	21.016 KPB.21, P2 CC-A CP-A, DC LINE PROT, LEVEL ALARM 10174/10212	-MINOR ON
8-12-2018 17:41:33.390	20.025 KPP.21, P2 PC, POLE POWER CONTROL ALARM (MONITOR-3) 9475/9507	-MINOR OFF 150n
8-12-2018 17:41:33.423	21.016 KPB.21, P2 CC-A CP-A, DC LINE PROT, LEVEL ALARM 10174/10212	-MINOR OFF
8-12-2018 17:41:33.442	22.044 KPB.24, P2 CC-B CP-B, EXC DEL ANGLE PROT, Y-BLOCK 10376/10440	-EMERGN OFF
8-12-2018 17:41:33.442	22.043 KPB.24, P2 CC-B CP-B, EXC DEL ANGLE PROT, CHANGEOVER 10376/10440	-MINOR OFF
8-12-2018 17:41:33.478	31.048 NR GRID SPECIAL PROTECTION SCHEME CASE-2 EXECUTED	-EMERGN ON
8-12-2018 17:41:33.805	21.017 KPB.21, P2 CC-A CP-A, DC LINE PROT, CHANGEOVER 10174/10212	-MINOR ON
8-12-2018 17:41:33.857	21.016 KPB.21, P2 CC-A CP-A, DC LINE PROT, LEVEL ALARM 10174/10212	-MINOR ON
8-12-2018 17:41:33.904	21.017 KPB.21, P2 CC-A CP-A, DC LINE PROT, CHANGEOVER 10174/10212	-MINOR OFF
8-12-2018 17:41:33.908	21.016 KPB.21, P2 CC-A CP-A, DC LINE PROT, LEVEL ALARM 10174/10212	-MINOR OFF

POWERGRID representative informed that internal decision has been taken to do OPGW work in offline mode at critical location of highway and railway crossing. Such type of location is also dangerous for human safety. Special precautions would also be taken in future work in online mode. DR/EL has been shared for all the tripped elements. Detailed report and remedial measures report would be shared separately.

POWERGRID representative further informed that both 400 kV lines, 400 kV Maharani Bagh-Ballabhgarh and G. Noida-Nwada ckt would be revived on or before 23rd Dec 2018.

NTPC representative informed that again vibration observed during fault in the system. This time, maximum vibration was of 207 microns and die down immediately after fault clearance. NTPC representative once again requested forum to provide the solution for observation of high vibration in Dadri stage-II units.

RLDC representative once again stated that oscillation/ vibration was not captured in electrical parameter through PMU data. NRLDC also wrote a letter to CTU/ CEA for further analysis of the event. After that this matter was also discussed in separate meeting held between CTU, NTPC, NRPC and NRLDC.

MS, NRPC requested NTPC to submit all the generator details to CTU for further studies with a copy to NRPC/ NRLDC.

POWERGRID was requested to kindly look into the following:

• Minimize tripping/ fault during OPGW installation.

- Expedite the revival of 400 kV Ballabhgarh-Maharani Bagh ckt as import margin is not available for Delhi to handle any contingency within state control area.
- Unwanted tripping of 400 kV Delhi-Mandaula ckt-1 & 2 from Mandaula end and remedies taken
- Reason of HVDC Rihand-Dadri Pole-II tripping and remedial measures taken. (is it due to commutation failure or dropping of auxiliary supply at Dadri end)
- SPS signal sending details from Rihand and Dadri and receipt of signal from remote end. (Time stamped signal of SPS)
- Co-ordinate with Punjab for non-operation of SPS feeders in Punjab
- Check the unnecessary tripping of 220 kV Samaypur-Palwal feeders from Ballabhgarh (PG) end.
- Detailed report of the incident covering all the aforesaid points shall be shared to NRPC/ NRLDC within 7days.

NTPC was requested to kindly look into the following:

- Reason of tripping of three auxiliary bus at Dadri TPS.
- Voltage drop relay setting for auxiliary bus contactor needs to be checked.

Punjab was requested to kindly look into the following:

- Exact reason of operation of RoCoF relays in the region and remedial measures taken.
- Co-ordinate with POWERGRID to check and correct the reason of non-tripping of feeders comes under SPS load group.
- Detailed report of the incident.

Rajasthan, Haryana, UP was requested to kindly look into the following:

• SPS operation details and analysis for lower load relief and remedial measures taken report.

Discussion in 37th PSC meeting:

POWERGRID representative informed following during the meeting:

- *Minimize tripping/ fault during OPGW installation*: Issue has been taken up with contractors through letters and verbal communication.
- *Expedite the revival of 400 kV Ballabhgarh-Maharani Bagh ckt as import margin is not available for Delhi to handle any contingency within state control area*: 400 kV Ballabhgarh-Maharani Bagh ckt has been restored.
- Unwanted tripping of 400 kV Delhi-Mandaula ckt-1 & 2 from Mandaula end and remedies taken: After implementation of series line reactor of 12ohms, Line impedance setting in distance setting was revised with addition of 12 ohms in existing zone impedance setting. After addition of 12 ohms series impedance all distance zones overreached and it resulted into tripping of Dadri-Mandaula ckts in Z-1 instead of Z-2. As CVT location at Mandaula station is after series reactor so impedance had not added. Lateron 12 ohms impedance removed from Mandaula end zone impedance setting. At remote end of 400 kV Mandaula station this 12ohms impedance will be added in all distance zones (Z-2 & Z-3) for correct operation of the distance protection.
- Reason of HVDC Rihand-Dadri Pole-II tripping and remedial measures taken. (is it due to commutation failure or dropping of auxiliary supply at Dadri end): Controller behavior at both Rihand and Dadri end is not in synch. Controller at Dadri end stabilizes the voltage but Rihand end couldn't stabilize and resulted into blocking at Rihand end. Controller in Rihand-Dadri HVDC is very old (more than 25 year old) and it is going to upgrade

- SPS signal sending details from Rihand & Dadri and receipt of signal from remote end. (*Time stamped signal of SPS*): Yet to be done. POWERGRID will explore the possibility of logging of SPS signal.
- Co-ordinate with Punjab for non-operation of SPS feeders in Punjab:
- Check the unnecessary tripping of 220 kV Samaypur-Palwal feeders from Ballabhgarh (PG) end: Issue has been checked and corrected at POWERGRID end
- Detailed report of the incident covering all the aforesaid points shall be shared to NRPC/ NRLDC within 7days: Share the details within 7days.

NTPC was requested to kindly look into the following:

- *Reason of tripping of three auxiliary bus at Dadri TPS*: Auxiliary buses tripped due to zero time delay in under voltage setting of auxiliary bus, it has been revised to 2second time delay with 80% of nominal voltage.
- Voltage drop relay setting for auxiliary bus contactor needs to be checked.

Punjab representative informed during the meeting:

- Exact reason of operation of RoCoF relays in the region and remedial measures taken: Punjab representative informed that time delay setting of rate of change of frequency (RoCoF(df/dt)) is 2 cycle instead of 7-8 cycle. Setting has been corrected at those locations.
- Co-ordinate with POWERGRID to check and correct the reason of non-tripping of feeders comes under SPS load group:
 - Cable was damaged at Laltokalan and it has been restored
 - Issue at Gobindgarh yet to be attended.
- Detailed report of the incident: Yet to be submitted, will share within 7days

NRLDC representative stated during the meeting:

- POWERGRID shall see the SPS signal scheme implemented at Mahendergarh end for Mundra-Mahendergarh scheme and implement the similar type of logging scheme for other SPS scheme implemented by POWERGRID.
- Exact reason of operation of RoCoF relays in the region and remedial measures taken: Punjab representative informed that time delay setting of rate of change of frequency (RoCoF(df/dt)) is 2 cycle instead of 7-8 cycle. Setting has been corrected at those locations.

Following are the action points decided during the meeting:

- POWERGRID shall see the SPS signal scheme implemented at Mahendergarh end for Mundra-Mahendergarh scheme and implement the similar type of logging scheme for other SPS scheme implemented by POWERGRID. In Mundra-Mahendergarh SPS scheme, logging of SPS signal and receipt to remote end has available in SCADA event log and Mahendergarh end. (Time Frame: 2months; Utilitity: POWERGRID)
- Receiving end of SPS signal for all existing SPS scheme needs to be wired in SCADA log/ event log. (Time Frame: 2months; Utilitity: Punjab, Rajasthan, Uttar Pradesh, Delhi, Haryana and other NR concerned utilities have SPS scheme)
- UFR and df/dt protection is last resort for prevention of any large grid disturbance. Setting of UFR and df/dt wrt to measurement cycle and absolute setting to be checked. (**Time Frame**: 15days; **Utilitity**: All concerned NR utilities)

- Staggering in under voltage setting for auxiliary buses at Dadri (NTPC) to be done and share the implemented setting. (**Time Frame**: 15days; **Utilitity**: NTPC)
- SPS signal issue for Gobindgarh feeder to be checked and corrected. End to end testing for Laltokalan and Gobindgarh shall also be done. (Time Frame: 7days; Utilitity: POWERGRID and Punjab)
- SPS signal related issues:
 - Tripping of Merta and Alwar end to be checked
 - Tripping at Samaypur (BBMB): only one ckt of 220 kV Samaypur-Palwal ckt tripped
 - Tripping at Modipuram to be checked
- Lower load relief/ non-tripping of feeder in C& D load group of SPS operation needs to be relooked by respective utilities (**Time Frame**: 7days; **Utilitity**: POWERGRID, Haryana, UP and Rajasthan)
- All the concerned utilities kindly share the detailed report considering the aforesaid points. (Time Frame: 15days; Utilitity: All NR constituents)

Multiple element tripping at 400 kV Dadri was a near miss event and it would have further added into major catastrophe in case of cascade tripping of one or more line in the system. HVDC pole blocking and distance protection over reaching is also alarming and indicate towards an immediate and in depth analysis. All the concerned utilities were once again requested to look into the event and send a report on above points, take remedial measures to avoid such incidents in future.

A.1 Tripping Events:

The complete summary of the events along with the information reported, action taken by entities is attached at **Annexure-VI**.

The recommendations of PSC are as follows:

A. Multiple times bus bar protection operation at 400 kV Orai (UP) during line fault on any outgoing feeder:

- 1. In view of the lack of information and clarity about the events and no representative from UPPTCL (Orai zone) attended the meeting, the event would be included again for discussion in the next PSC meeting.
- Bus Bar Protection at 400 kV Orai (UP) needs to be checked and corrected. Bus Bar Protection for 400 kV Bus-1 operated during A/R of the line. (Action: Uttar Pradesh; Time: Within 15days)
- 3. Operation of bus bar protection for 400 kV bus-2 within 100ms of fault occurrence needs to be looked into.
- No representative from UPPTCL (Orai zone) presented during the meeting, It was informed to STU/SLDC-UP to collect the information (DR/EL, detailed report) and submit the details considering the points for discussion mentioned below: (Action: UPPTCL/ SLDC-UP, Time: Within 15days)
 - a. Event of 16th Sep 2018
 - i. Exact location of fault and nature of fault.
 - ii. Sequence of tripping needs to be reported and explained.
 - Mal-operation of 400 kV Bus Bar Protection (400 kV Bus-1) at 400/220 kV Orai (UP) station during line fault in 400 kV Orai-Mainpuri ckt-1 needs to be looked into.
 - iv. Similar incident happened multiple times. Operation of Bus Bar Protection in case of single phase to earth fault is serious cause of concern for grid security. UPPTCL is advised to look into the matter and take corrective action
 - v. Detailed report, remedial measures report and supporting DR/EL needs to be submitted.
 - vi. Operation of 400 kV bus bar protection at 400/220 kV Orai (UP) to be reviewed and corrected
 - b. Event of 29th Nov 2018:
 - i. Exact location of fault and nature of fault.
 - ii. Sequence of tripping needs to be reported and explained.
 - Mal-operation of 400 kV Bus Bar Protection (400 kV Bus-2) at 400/220 kV Orai (UP) station during line fault in 400 kV Orai-Mainpuri ckt-2 needs to be looked into.
 - iv. Similar incident happened multiple times. Operation of Bus Bar Protection in case of single phase to earth fault is serious cause of concern for grid security. UPPTCL is advised to look into the matter and take corrective action
 - v. Detailed report remedial measures report and supporting DR/EL needs to be submitted.

B. Complete outage of 400/220 kV Gorakhpur (UP) at 16:56hrs of 17th Sep and 10:03hrs of 22nd Oct 2018

- 1. Operating procedure/checklist for maintenance or upgradation activity shall be followed religiously for prevention of any mal-operation/mis-operation. (Action: General Recommendation)
- 2. Bus Bar Protection of both side of 400/220 kV Gorakhpur (UP) needs to be thoroughly checked. (Action: Uttar Pradesh; Time: Within 7days)
- 3. Backup over current setting of 500MVA ICT-1 at Gorakhpur (UP) to be checked wrt sensitive setting as ICT tripped within 100ms. (Action: Uttar Pradesh; Time: Within 7days)
- Tripping of 400 kV Gorakhpur (UP)- Gorakhpur (PG) ckt-1 from Gorakhpur (UP) end seems to be due to PLCC panel problem. UPPTCL shall kindly check the PLCC panel. (Action: Uttar Pradesh; Time: Within 7days)
- 5. Alstom make station event logger shall be kept in healthy condition. (Action: Uttar Pradesh; Time: Within 30days)
- 6. A detailed report covering the following points along with remaining DR, station EL shall be submitted: (Action: Uttar Pradesh; Time: Within 7days)
 - a. Event on 17th Sep 2018:
 - I. Sequence of tripping needs to be reported and explained
 - II. Reason of delayed clearance of fault
 - III. Operation of bus bar protection for both 400 kV buses at Gorakhpur (UP) needs to be relooked.
 - IV. Delayed clearance of fault more than 400ms in case of operation of instantaneous bus bar protection operation also to be checked.
 - V. Healthiness of both 400 kV & 220 kV bus bar protection of 400/220 kV Gorakhpur (UP) needs to be ensured.
 - VI. Back up over current earth fault protection of 500MVA ICTs needs to be looked into.
 - VII. Reason of tripping of 400 kV Gorakhpur (UP)-Gorakhpur (PG) ckt-1 from Gorakhpur (UP) end needs to be explained. (From PG end 400 kV Gorakhpur (UP)-Gorakhpur (PG) ckts tripped in Z-2)
 - VIII. SCADA SoE (not received) of tripping of 400 kV Gorakhpur (UP) end-Azamgarh ckt.
 - IX. Status of availability of DR/EL and extracting software needs to be shared.
 - X. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL
 - b. Event on 22nd Oct 2018:
 - I. Sequence of tripping needs to be reported and explained.
 - II. Reason of delayed clearance of fault.
 - III. Operation of bus bar protection for both 220 kV buses at 400/220 kV Gorakhpur (UP) needs to be relooked.
 - IV. Delayed clearance of fault more than 400ms in case of operation of instantaneous bus bar protection operation also to be checked.
 - V. Healthiness of 220 kV bus bar protection of 400/220 kV Gorakhpur (UP) needs to be ensured.
 - VI. Time synchronization of SCADA SoE to be checked and corrected.
 - VII. Status of availability of DR/EL and extracting software needs to be shared.
 - VIII. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL.

C. Multiple Element tripping at 400/220 kV Patran substation at 11:11 hrs of 18th Sep 2018

PTCL shall revise the scheme of 400 kV DC supply to GD for supply from both the DC source for better redundancy and reliability. Further tripping shall be done in case of actual gas leakage, otherwise alarm shall be taken in control room for DC supply failure. (Action: PTCL, Time: Within 60days)

D. Multiple element tripping at 400/220 kV Fatehpur (PG) at 12:17hrs of 29th Sep 2018

- It was evident from DRs of the above trippings that the relays have functioned as per scheme and settings except LBB of the Tie CB. LBB relay (SIPROTECH- 7SS252) of 400KV Unchahar-2 – ICT-2 Tie was later found to be faulty when tested and same was replaced. All the major remedial measures have already been taken.
- 2. POWERGRID shall check and share the details for following points: (Action: UPPTCL/ SLDC-UP, Time: Within 15days)
 - a. Reason of tripping of 220 kV Fatehpur (PG)-Fatehpur (UP) ckt-1.
 - b. Digital data status needs to be checked for inter-tripping of 765/400 kV 1500MVA ICTs at Fatehpur (PG).
 - c. Sequence of tripping in time stamped (ms) manner to be established.

E. Multiple Element tripping at 400/220kV Obra-B TPS at 04:37hrs of 14th Oct 2018

- 1. No representative from UPRVUNL presented during the meeting, It was informed to STU/SLDC-UP to collect the information (DR/EL, detailed report) and submit the details considering the points for discussion mentioned below: (Action: UPPTCL/ SLDC-UP, Time: Within 15days)
 - a. Exact sequence of events in view of cause of event; protection operation/nonoperation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
 - b. Exact location of fault and nature of fault.
 - c. Sequence of tripping needs to be reported and explained.
 - d. Reason of multiple element tripping without any fault in the system.
 - e. Arrangement of station auxiliary supply and its back up at 400/220 kV Obra-B TPS to be shared. Also reason of tripping of all running units needs to be explained.
 - f. Reason of tripping of 400 kV transmission line (400 kV Obra-Rewa Road and 400 kV Obra-Sultanpur ckt) needs to be reviewed.
 - g. Availability of time synchronized SCADA SoE to be checked and corrected.
 - h. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL

A detailed report covering the aforesaid points along with remaining DR, station EL shall be submitted: (Action: UPPTCL/ SLDC-UP; Time: Within 15days)

F. Complete outage of 220 kV Kota TPS and Sakatpura (Raj) at 21:00hrs of 20th Oct and 14:26hrs of 13th Nov 2018

- Time delay of Reverse zone setting at Kota TPS end is still 1000ms. Reverse zone (Z-4 setting) shall be coordinated with Z-2 timing (350/500ms) as per Rama Krishna committee report, same needs to be modified at Kota TPS. (time delay for reverse zone setting shall be 500ms) (Action: RRVUNL/ RRVPNL/ SLDC-Rajasthan, Time: Within 7days)
- Back up earth fault setting of 220 kV Bus Couplers needs to be reviewed. (Action: RRVUNL, Time: Within 7days)

- 3. 220 kV bus bar protection at Sakatpura station shall be available within 30days. (Action: RRVPNL, Time: Within 30days)
- Due to lack of information from RRVUNL complete tripping couldn't be analysed at the time of meeting. RRVUNL shall submit the detailed report considering the points for discussion mentioned below (For the incident occurred at 21:00hrs of 20th Oct 2018): (Action: RRVUNL/ RRVPNL/ SLDC-Rajasthan, Time: Within 15days)
 - a. Reason of delayed clearance of fault.
 - b. Failure of which primary and back up protection led to delayed clearance of fault.
 - c. Exact sequence of events in view of cause of event; protection operation/nonoperation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
 - d. Back up earth fault setting of 220 kV Bus Coupler-1 needs to be reviewed.
 - e. Sequence of tripping needs to be reported and explained. (Time stamped data for the tripping didn't receive)
 - f. Tripping of all station transformer (220/6.6kV) on back earth fault protection needs to be reviewed in accordance with current & time delay setting.
 - g. Reason of tripping of unit-2 within 200ms of fault occurrence before tripping of all the lines from Kota TPS.
 - h. Arrangement of station auxiliary supply and its back up at 220 kV Kota TPS to be shared. Also reason of tripping of all running units needs to be explained.
 - i. Availability of time synchronized SCADA SoE to be checked and corrected.
 - i. Tripping of units other than 2, 3 & 5
 - ii. Tripping of 220 kV feeders from remote end of KTPS
 - iii. Detailed report, remedial measures report and complete DR/EL (cfg, dat file) needs to be submitted by RRVPNL.
- 5. Reverse zone setting in all 220 kV feeders and bus coupler at 220 kV Sakatpura station needs to be checked and corrected. (As per details of 13th Nov 2018, only two feeders at 220 kV Sakatpura station tripped in reverse zone. Bus coupler also didn't trip in this incident). Bus coupler over current setting also needs to be revised for 100ms time delay. (Action: RRVPNL/ SLDC-Rajasthan, Time: Within 7days)
- Due to lack of information from RRVPNL complete tripping couldn't be analysed at the time of meeting. RRVPNL shall submit the detailed report considering the points for discussion mentioned below: (Action: RRVPNL/ RRVUNL/ SLDC-Rajasthan, Time: Within 15days)
 - a. Exact location of fault and nature of fault.
 - b. Reason of delayed clearance of fault.
 - c. Failure of which primary and back up protection led to delayed clearance of fault.
 - d. Exact sequence of events in view of cause of event; protection operation/nonoperation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
 - e. Status of availability of bus bar protection at 220kV Kota (Sakatpura) having four number of bus bars to be shared.
 - f. As approved in 25th PSC meeting, temporary arrangement for bus bar protection, could be put in place till actual bus bar protection is available. Status of the same to be apprised. Reason of delayed clearance of fault if arrangement was there?
 - g. Sensitive distance protection setting of 220 kV Morak (end)-KTPS ckt to be reviewed.
 - h. Reverse zone (Z-4 setting) to be coordinated with Z-2 timing as per Rama Krishna committee report, same needs to be modified at Kota TPS.
 - i. Rate of change of frequency protection at 220 kV Bhilwara (Raj) needs to be looked into.
 - j. Availability of time synchronized SCADA SoE to be checked and corrected.
 - i. Tripping of units other than 2, 3 & 5 $\,$

- ii. Tripping of 220 kV feeders from remote end of KTPS
- k. Detailed report, remedial measures report and complete DR/EL (cfg, dat file) needs to be submitted by RRVPNL.

G. Multiple element tripping at 400/220 kV Kashipur at 13:28hrs of 25th Oct 2018

- No representative from PTCUL presented during the meeting, PTCUL shall submit the information (DR/EL, detailed report) and the details considering the points for discussion mentioned below (Action: PTCUL/ SLDC-Uttarakhand, Time: Within 15days):
 - Exact sequence of events in view of cause of event; protection operation/nonoperation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared
 - b. Exact location of fault and nature of fault.
 - c. Sequence of tripping needs to be reported and explained.
 - d. Reason of delayed clearance of fault.
 - e. Delayed clearance of fault in case of operation of bus bar protection for both 220 kV bus at 400/220 kV Kashipur (PTCUL) needs to be relooked.
 - f. Delayed clearance of fault more than 1640ms in case of operation of instantaneous bus bar protection operation also to be checked.
 - g. Healthiness of 220 kV bus bar protection of 400/220 kV Kashipur (PTCUL) needs to be ensured.
 - h. Availability of time synchronized SCADA SoE to be checked and corrected.
 - i. Reason of tripping of 400 kV Moradabad-Kashipur and Nehtaur-Kashipur ckts and its protection co-ordination with back up protection setting of 400/220 kV ICTs at Kashipur (PTCUL).
 - j. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL

H. Multiple Element tripping at 400/220kV Bhiwadi Station at 08:14hrs of 24th Nov 2018

- A/R in 220 kV Bhiwadi (PG)-Kushkhera ckt (both end) needs to be checked through end to end testing and put back in service. (Action: POWERGRID/ RRVPNL, Time: Within 7days):
- 2. ABB make RADSS bus bar protection shall be replaced with new numerical bus bar protection at 220 kV Bhiwadi (PG) (Action: POWERGRID, Time: till March-2019)
- 3. At Bhiwadi(PG), time of opening of CB as captured from SCADA SoE is not consistent with PMU based fault timings. Time synchronization in view of above needs to be checked at Bhiwadi(PG). Time synchronization will be cross checked with RLDC SCADA SoE log at the time of next shutdown. **(Action:** POWERGRID**)**

I. Multiple Element tripping at 400/220kV Kirori (Haryana) on 20th Dec 2018 at 01:22hrs

- 1. In view of the lack of information and clarity about the events and no representative from HPGCL attended the meeting, the event would be included again for discussion in the next PSC meeting.
- Issue needs to be discussed with HPGCL and share the detailed report considering the input from HPGCL. (Action: HVPNL; Time: Within 10days). If issue unsolved then kindly report to NRPC, NRPC will separately call a meeting for the same.
- 3. In 400 kV Khedar-Kirori ckt-1 at Kirori end, carrier was in unhealthy condition. NRPC suggested HVPNL to make it healthy. (Action: HVPNL. HPGCL; Time: Within 10days)

- 4. A detailed report covering the following points along with DR, station EL shall be submitted: (Action: HVPNL. HPGCL; Time: Within 10days)
 - a. Exact location of fault and nature of fault for both the incident.
 - b. Sequence of tripping needs to be reported and explained.
 - c. Reason of delayed clearance of fault.
 - d. Exact sequence of events in view of cause of event; protection operation/nonoperation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared
 - e. Sensitive back up earth fault protection setting of 400 kV Khedar (end)-Kirori ckt-1 & 2 to be reviewed.
 - f. 220 kV Kirori (end)-Bhuna ckt: Single phase (R-phase) tripping of line after 1000ms needs to be looked into? After 1200ms of opening of R-phase CB, Y&B-phase also tripped, reason of tripping?
 - g. Tripping of Blue phase of 220 kV Kirori (end)-Masudpur ckt-2 during R-N fault to be checked? R-phase continuously fed the fault for another 900ms, reason to be looked into.
 - h. R-phase of 220 kV Kirori (end)-Masudpur ckt-1 tripped and A/R after 1000ms. Y-N fault also reflected in the line and fault current was higher than R-N fault but line didn't trip, reason to be checked? R-phase voltage measurement in DR is not ok. (Low throughout DR capturing time). This R-phase voltage is from Bus PT so bus PT needs to be checked.
 - i. Availability of time synchronized SCADA SoE to be looked into.
 - j. Detailed report, remedial measures report and supporting DR/EL (only for 400 kV Khedar end) needs to be submitted by HVPNL.

J. Tripping other than to be discussed in 37th PSC meeting

For better reliability of power system each and every multiple element tripping should be analyzed properly and remedial measures to be taken by utilities. Total 78 multiple element tripping event reported by NRLDC to RPC and constituents for the month of Sep to Dec 2018.

Preliminary reports of all these trippings are available at NRLDC website and already send to concerned utilities within 24hrs of the incident.

Among 78 events, around 19 events would be discussed in 37th PSC meeting. For rest events, utilities may kindly submit the details (DR/EL and detailed report along with remedial measures) to NRLDC and NRPC at mail ID: nrldcso2@posoco.in, <a href="mailto:nrldcso2@pos

List of the all the multiple elements tripping event is available at NRPC website at following link: https://bit.ly/2LTT6tH

NRPC suggested all the concerned utility to kindly submit the detailed report in NRPC approved format. Member may kindly submit the details.

List of participants for 37th Protection Sub- Committee Meeting.

Date: 21.01.2019

SI No	Name	Designation	Organization	Tel. No. / Mobile No.	E-mail
I	Mr. Pionth Das DGM(E), RompurAPS, SOVN	DCM(E)	SJUN LTD.	9418475284	PINTURANJAN@YAHAT CO 190
2	Amarjat Thosean Manager (E) SJVN Ltd	Wfa (E)	SJUN LHA	94180 36062	AMARTHOI@GMAIL COM
3	Ray 518 Singh Walia	Addl. S.E	PSTCL	9646118223	2ajbir - Wale 74@ 4240. Gu
4	B.L. Yadan	AGM	NTPC	9650993044	blyadaw@nppc.co.in
5	Parkaj Malviga	SE TEC Lycknow	UPPTCL	9450909474	setnectio@quail.com
6	5. K. Das. Sm (E),	5M(E)	NAPC	9717786721	Sdas_nhpc@pahoo.co.in
7	5. Tyayi	Myr	NRIOC	9599441243	shecharb @ peso coin
8	नितिन यादत	मेनिजर्	3.27.11.2. a [4 mon]	9560050257	nitingader @posoco.in
9	राजीन पोर्वाल	महा प्रविधक	NRUSC	9871581133	sk. pokwel @posoco. in
10	Mahendra Dryh Hadg	DGM	POWERGRIP	9650555997	Mshada (a) powergred indies. Comp.

SI No	Name	Designation	Organization	Tel. No. / Mobile No.	E-mail
11	Nitin Verma	chief Manage	POWERGRID	8005499952	nverma@ponergridiudia.
12	Paritosh Joshi	Mar(7) prot.	DTL	9999533933	paritoshjoslu2013@gonail
13	1-litesh pleimez	DGM Proto	Nd. DTL	99 99 533662	HITESHKUMAR. DTLCGMAIL.COM
14	Francen Kumar	Ch. Manager	POWERGRID, NR-II	99 06 54 6606	mr. praveenkeernen @ pareeyer
15	3712 20-20-20-9	forsain/	बी की एम ही	9417202059	A dispe @ bomb. nic. in
16	Raman Sobti	XEN	Panipat TPS, HPGCL	93550-84410	kaman. sobti@hpgcl. org. in
17	Sandeep	AE	HVPNL	9354679217	Xenmpechare hopenorsin.
18	Salau Deon	ĄE	HVPNL	9354307677	xen400kvkirori@hupn.org.m
19	AFTAB HASANMAZMARI	EE.	UPPTCL	9458096671	eetnemathura@uppte.arg
2.0	Jameel Almad Vera	EÉ	UPPTCL	94-580 96627	ectocaligar @ Upptcl org
21	JaiPralash	AE	UPPTCL	8004926563	jpupptcl1987@gmail.com
22	H-CVERMA	EE	UPPTCL	8887137903	setne gkp @ gmil.com.

 $\partial_{\hat{k}}$

SI No	Name	Designation	Organization	Tel. No. / Mobile No.	E-mail
23	Kamal Kiskore Kaly	ACE CMPTED	RVPN	9414061417	enternettable gruet, con ce. mponppn, co. cn
24	Sushil Kumar	AEN (MPTES)	RVPNL	9414061328	gen. prot. bharatpur @ rvpn.co. in
25	Sachin Vyas	RyMgn. cosno,	THOCI L	9760137888	sachinvyasol@gmail.com,
26	NIVER KARTHIKEZAN	Dy Manager (g)m	STERUTE POWER	8966903034	Vivek. Karthikeyan@ Sterlet. com
27	T. Thamarai Selvan	Sr-Engineer	WUPPTC L	70 542 059 30	thamerai. wupped @ gmail.com
28	Murali kuishna	Sr. Engineer	WUPPTCL	8800991911	murali. wupptel @ grail.com
29	Talun Tamoar	Sr. Engineo	JSWHEL	9816595557	tarien. tanwar @jsco in.
30	turny valia	Sr. Engjuen '	JSWHEL	7018091548	hummy. Kalika jew. in
31	S.C. Sharma	Sr. DGM	POWERGRID	9873918526	St. Sharma@frewergnistischin
32	Shroy Kumar	AE	NRPC	882864-876 (shrey. ce a @ g meell. Con
33	Abstray Dulley	AEE	NRPC	9599179744	dulley - akshay @gov.in

4

A.S.

SI No	Name	Designation	Organization	Tel. No. / Mobile No.	E-mail
34	Amit Gupta	Manager	POSOCO	8800 690954	comitgupta@pasaco.in.
35	Sanjay Kumar	STELERD	NAPS	9412768003	Sanjay_ Kumar @ mpcil. co
36	MAAZ	A.E (TEC)	UPPTCL	9412749844	setnement @ gmail.com.
37	Anný pratop singh	EE (Tec)	UPPTCL	7290091978	eetrogtonvida @gmadl.c
38	Anný pratop singh Kaushik Panditoro	A£	NPPC	9869081939	Kauslike. panditorao @
39					
40					
41					
42					
43					
44					

S.No	Constituent/	Nomination							
	Utility	Name	Designation	Address	Ph. (O) /Mob. No.				
1.	0.11.01.1	1.Sh. Prakash Chand	Manager (E)	NJHPS, Jhakri,Distt-Shimla, HP	01782-275140				
	SJVNL	2.Sh. Pintu Das	Dy.Manager (E)	NJHPS, Jhakri,Distt-Shimla, HP	01782-275140				
<mark>2.</mark>		1.Sh. Praveen Kumar	AM (T)		9999533903				
	DTL (Updated)	2.Smt. Ramneet Chanana	AM(T)		9999533730				
		3.Sh.Avishek Malik	AM (T) Prot.		9999535139				
3.		1.Sh. Y.S. Rana	Sr. Engr.	POWERGRID, Moga	09501102085				
	POWERGRID	2.Sh. Subhas Kumar	Sr. Engr.	POWERGRID, Hisar	09729872353				
		3. Sh. Ajay Gola	Sr. Engr.	NR-I HQ, New Delhi	09899555175				
4.	NTPC	1.Sh. B.L.Yadav	AGM (OS)		09650993044				
<mark>5.</mark>	PSTCL	Sh. Ranbir 1. Singh Walia	ASE	PSTCL, Ludhiana	9646118223				
	(Updated)_	2.Sh. Harvinder Singh	Sr EXN, Protection	PSTCL, Jalandhar					
		3. Sh Sanjeev Kumar	AEE	Protection Division, Mohali					
6.	HVPNL	1.Sh. Y.S. Gulia	Executive Engineer	HVPNL, M&P, Panipat	09354194830				
7	RRVPNL (Updated)	1. Sh.Jyotirma Jaiminy	AEN-III (C&M)	400 kV GSS, Heerapura	09413382408				
		2. Sh. Vijay Pal Yadav	AEN (Prot.)	RRVPNL, Alwar	09414061407				
8	UPPTCL	1.Sh. D.K Acharya	Advisor to Director (Op) UPPTCL	Shakti Bhawan Extn (11th Floor) 14, Ashok Marg, Lucknow- 226001	Ph.(O) –Director (Op) office 0522-2287833 Fax- 0522-2286476				
		Singh	Advisor to CE (TW), Meerut UPPTCL						
9	HPSEBL	1. Sh. Sat Pal Jamwal	Exe.Engg.	Protection & Testing Division, HPSEB Ltd. Kangra (HP)	09418122067 Telefax- 01892- 264519				
		2.Sh. Dharam Singh Rana	Asst. Engg.	Protection & Testing Division, HPSEB Ltd. Kangra (HP)	09418017213 Telefax- 01892- 264519				
10	PTCUL	1.Anupum Singh	Exe.Engg.	T&C					
		2. Asim Beg	Asst. Engg.	T&C]				
11	NPCIL	1. Sh. N. K. Pushpakar	Maintenance Superintende nt NAPS, or his nominee	Plant Site, Narora, Bulandshahar Distt. UP-202397	(5734) (O) 222167 (R) 222228 M-09412768002 e-mail- nkpushpakar@npcil.co				

					.in
		2. Sh. Virender Yadav	RAPS-A	Rawatbhata Rajasthan Site, P.O. Anushakti, via: Kota,	M- 09413358024
				Rajasthan-323303	
		3. Sh. Sanjay Jhamtani	RAPS-B	Rawatbhata Rajasthan Site, P.O. Anushakti, via: Kota,	M- 09413356912
		4. Sh. Randhir Misra	RAPS-C	Rajasthan-323303 Rawatbhata Rajasthan Site, P.O. Anushakti, via: Kota, Rajasthan-323303	M- 09413358237
		1. Sh. N. Kishore	DGM	Rosa Power Supply Co.Ltd.,	05842-
	Rosa Power	Kumar	-	Hardoi Road, Service Building, Rosa Shahajahanpur-242406	306675/09389495241
12	Supply Co. Ltd.	2.Sh. Gaurav Gupta	Sr. Manager	Rosa Power Supply Co.Ltd., Hardoi Road, Service Building, Rosa Shahajahanpur-242407	05842306789/093690 76402
10		Sh. Amitabh Jha	Sr. Manager (E)	Uri Power Station, Baramullah, J&K	
13	NHPC	Sh. P. K. Das	Mánager (E)	Baira Siul Power Station, Chamba, HP	
		1. Sh. Manoj Rawat	A.E.	Dakpathar, Distt: Dehradun	09456590406
14	UJVN Limited	2. Sh. Anoop Deepak	A.E.	Galogi, Distt: Dehradun	09456590173
	BBMB	Sh. Ranbir Singh	Assistant		
<mark>15</mark>	(Updated)	Sharma	Director	P&T Cell BBMB Panipat	9466121202

Annex-III

Status of pending rectification of defects observed during BPA

Sl. No.	Utility	No. of sub- stations covered under BPA	Expected Completion	Remarks
1	UPPTCL	21	-	Representative of UPPTCL informed that in 220 kV stations, PLCC panels were being procured from CGL and all major deficiencies have been rectified.
2	UPRVUNL	4	-	Obra 'A'– including rectification of time synchronization & BBP, PLCC (to be installed by UPPTCL). To be completed by November, 2016.Harduagani March, 2017– to be completed by March, 2017Status could not be updated as there was no representation from UPRVUNL in the meetings.
3	HPSEB Ltd.	1	October 2017	 Out of 12 deficiencies observed, 8 already rectified. 1 no. deficiency to be rectified by March 2017 and 3 others by October 2017.
4	UJVNL	1	December, 2016	 Breaker for 220 kV Khodri-I &II needs to be replaced. Expected date as intimated by SLDC Uttarakhand in 127th OCC meeting was 31.12.2016. Status could not be updated as there was no representation from UJVNL in
				the meetings.
5	PDD, J&K	3	Statusofprogress isnotsubmitted.Targetcompletionnotknown.	As informed during 33 rd NRPC meeting that deficiencies where procurement was not involved had been rectified and other works where procurement is involved are yet to be taken up. PDD J&K informed that they have submitted the proposal for

		Status could not be updated as there was no representation from PDD J&K in the meetings.
		J&K.
		Sarna-Udhampur line, pertains to PDD,
		As informed by PSTCL defects at 220kV
		from PSDF.
		rectified when fund will be disbursed
		PSDF funding and deficiencies will be

Protection audit of intra-state system/balance system not covered in Basic Protection <u>Audit</u>

Utility	Third party protecti on audit carried out by	No. of sub- stations covered/ expected to be covered	Status of Audit	Status of Report	Status of submission of action Plan for rectification of deficiencies
RRVPNL, RRVUNL	CPRI	RRVPNL-39 RRVUNL-5	Completed	Submitted	<u>RRVPNL</u> - Lead Acid Batteries have been procured and installed. <u>RRVUNL</u> - Action Plan submitted.
BBMB	-do-	20	Completed	Submitted	The action to attend the deficiencies observed in the audit is underway.
PSTCL, PSPCL	-do-	PSTCL-22 PSPCL-3	Completed	Submitted	Representative of PSTCL informed that Report on CPRI Audit already submitted and emailed.
UPRVUNL	-do-	2	Completed	Submitted	Parichha TPS and Panki TPS: All the deficiencies are likely to be rectified by March, 2018
UPPTCL	-do-	41	Completed	Shall be submitted after	Representative of UPPTCL

Utility	Third party protecti on audit carried out by	No. of sub- stations covered/ expected to be covered	Status of Audit	Status of Report	Status of submission of action Plan for rectification of deficiencies
				receipt and examination of Report, same.	informed that CPRI is working on this and detailed report will be submitted by June, 2019.
Rosa Power	-do-	1	Completed	Submitted	Action Plan submitted and the deficiencies observed rectified.
UJVNL	-do-	2 (Chilla, Chhibra)	Completed	Submitted	Action Plan not submitted. No representative was present.
PDD J&K	-do-	3 (Janipur, Amargarh, Hiranagar)	Completed	Submitted	Action Plan for Heeranagar and Amargarh not submitted. No representative was present.
JSW	-do-	1	Completed	Submitted	Rectification of observation complied.
HPSEB Ltd.,	-do-	6 (Uprela Nangal, Giri 220 kV, Jassore 220 kV, Baddi, 220 kV Kangoo, 220 kV Kotla)	Completed	Submitted	Action Plan for 220 kV Kotla not yet submitted. Rectification of observation partly complied. Rectification will be completed by October 2017

Utility	Third party protecti on audit carried out by	No. of sub- stations covered/ expected to be covered	Status of Audit	Status of Report	Status of submission of action Plan for rectification of deficiencies
UT Chandigarh	-do-	1 (Kishengarh)	Completed	Submitted	Not submitted. No representative was present.
Budhil Power	-do-	1	Completed	Submitted	Not submitted. No representative was present.
HVPNL	-do-	4 (Sector 72, Gurgaon ; Tepla; Bastara; A-5, Faridabad)	Completed	Submitted	To be rectified by December 2017
DTL	-do-	4 (Rohini; Mehrauli; Mundka; Shalimar Bagh)	Completed	Submitted	Action has already been taken. Report will be submitted.
PTCUL	-do-	4 (Pantnagar, Haridwar, Kashipur, Roorkee)	Completed	Submitted	Not submitted forHaridwar,RoorkeeRelays have beendelivered at thesite.To be completed by31st October, 2017

Annex-V

Status of Bus bar Protection for Northern Region Constituents

State/ Constituent	TRANSC O/GENC O	Total no. of S/S/ Sw. yards (220 kV and above)	No. of S/S/ Sw. yards where Bus bar protection is functioning	Remarks	Action Plan
Delhi	DTL	37	34	For 220 kV S/S namely, Gopalpur and Kanjhawala is being planned.(Lodi Road is GSS)	PO awarded to M/s GE T&D India Ltd. for the work of Supply and ETC of 26nos. Bus Bar Schemes in 400 and 220kV DTL substations on 06.04.18. Completion period is 9 months.
Haryana	HVPNL	63	48	12 out of which 5 in process ;7(date is yet to be decided); 3 not required	Tentative date of commissioning: 30.06.2019
Rajasthan	HPGCL RVPNL	03 53	03 46		74 nos. New Bus
			(7 defective)		bar Protection scheme under commissioning. 10 Commissioned.
	RVUNL	05	05		

Himachal Pradesh	HPSEB	08	04	At one s/s it was working, 2 sub-station it was defective.	04nos.commissioned andfor remaining 04s/s to be done byOct 2017.
Punjab	PSTCL	98(5 no 400 kV s/s)	46(5 no. 400 kV s/s)		Work in progress for BBPS protection, 46/98 (220kV) 05/05 (400kV) completed. Till then reverse zone protection time set to 160 ms. For remaining substations, work has been undertaken by TS organization and will be completed by 31.12.19. by TS organization. Procurement process for BBPS delayed due to re- tendering twice by Finance wing of PSTCL. Re- tendered again last month and target date is 31-12-19 & PSDF funding available. PLCC work will also be completed by 31-3- 19 as procurement process is underway.
	PSPCL	03	03		
J&K	PDD	06	-		The status for the same could not be

					ascertained as representative from PDD, J&K was not present in the meeting.
Uttarakhand	PTCUL	10	09		Order placed for 01 defective. Would be completed by May 2017.
	UJVNL	-	-		
BBMB	BBMB	23	20	Not required at Dhulkote and Jagadhari. also for Sangrur, Kurukshetra and Delhi as no. of feeders is less than five. PSC decided that it needs to be installed.	andDelhi,LOIhas been issued on27.06.18&material is likely
Uttar Pradesh	UPPTCL	99 05	- 10	04 no. are pending	Representative of UPPTCL informed that SEL panels are being procured and its installation would be completed within 6 months.
POWERGRID	PGCIL	55	55		
Central Generating	NTPC	11	11		
Sectioning	NHPC	09	09		

Stations	NPCIL	02	02	
	THDC	02	02	
	SJVNL	02	02	

1. Tripping events

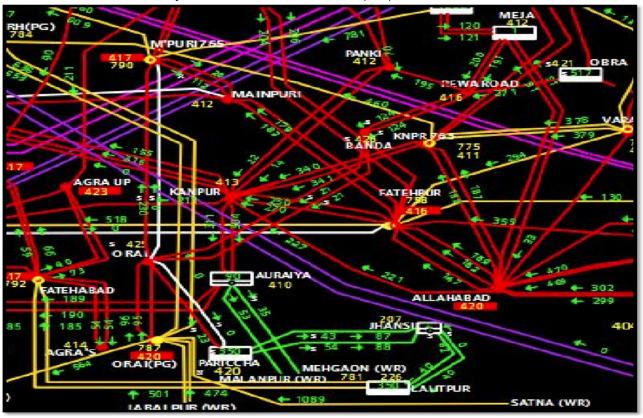
A. Multiple times bus bar protection operation at 400 kV Orai (UP) during line fault on any outgoing feeder.

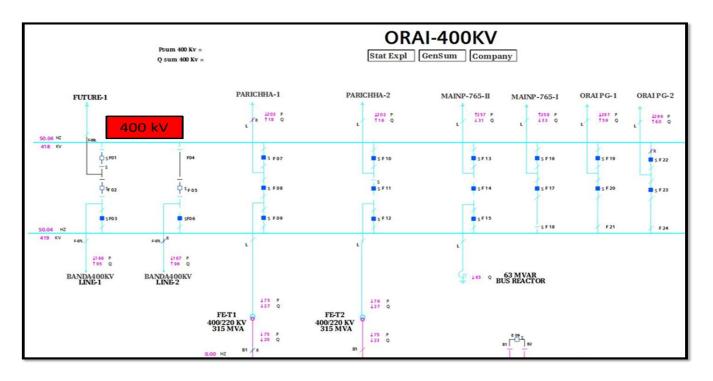
Event category: GI-2

Generation loss:	Nil
Loss of load:	Nil
Energy Loss:	Nil

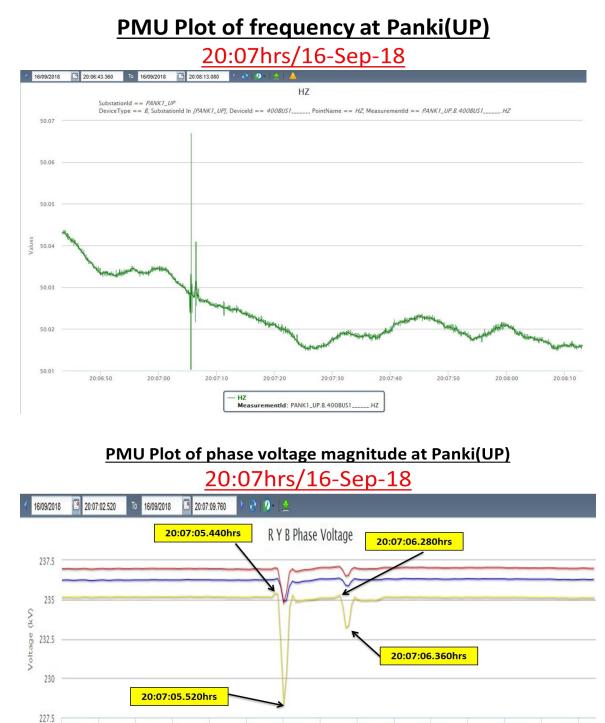
Data Summary received/available at NRLDC:

Description	Reference	Fault Info	Remarks
Fault Clearance Time	PMU data	100ms	
Phase of the fault	PMU data		In different phase for different dates


Description	Utilities	Status	Remarks
Availability of Digital Data (SCADA Data)	Uttar Pradesh	Available	
DR/EL	Uttar Pradesh	Received (only DR)	For some of the tripping
Preliminary Report	Uttar Pradesh	Received	After 24hrs
Detailed Report	Uttar Pradesh	Not Received	


Description Clauses	Utility	Remarks
---------------------	---------	---------

Violation of Clauses	 IEGC 5.2.r & 5.9.6.c (VI) CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 43.4.A & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3, 6.4) CEA (Technical standard for connectivity to the Grid, Amendment Regulation 2013), part- II, B2 	Uttar Pradesh	 Detailed Report yet to be received Adequately Sectionalized and graded protective relaying system Incorrect/mis-operation / unwanted operation of Protection system
-------------------------	---	------------------	---

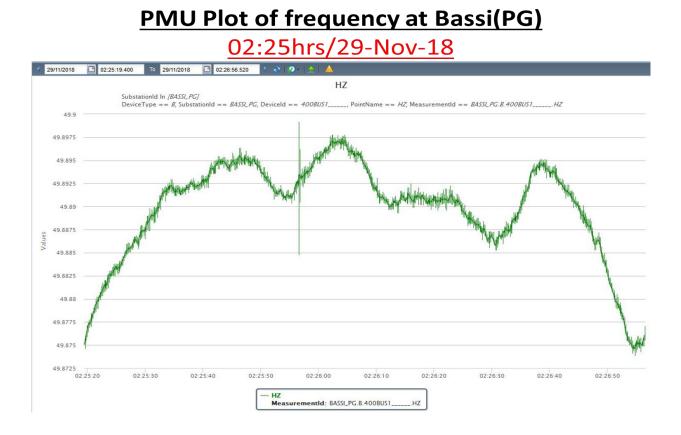

Based on above information description of the events is:

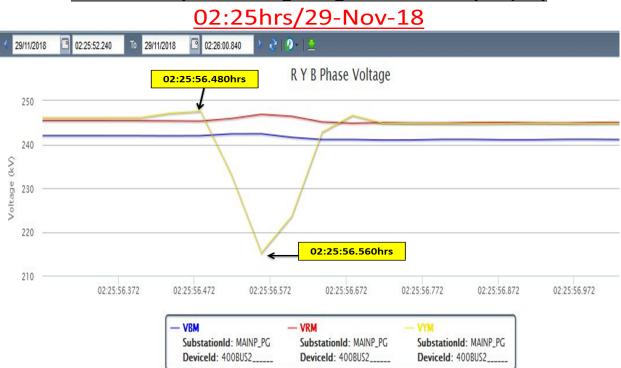
- 1. 400 kV Orai (UP) is connected with Orai (PG) D/C, Mainpuri (UP) D/C, Parichha (UP) D/C and Banda (UP) D/C. It also has two 315MVA 400/220 kV ICTs. It has one and half breaker scheme.
- 2. Connectivity and SLD of 400 kV Orai (UP):

- 3. Event Description for 16th Sep 2018 event:
 - a. 400kV Mainpuri 765(UP)-Orai(UP) ckt-1 tripped on Y-N fault, 34.9Km from Mainpuri 765(UP) end. At the same time, 400 kV Bus 1 at 400kV Orai(UP) also tripped.
 - b. In antecedent condition, 400kV Mainpuri 765(UP)-Orai(UP) ckt-1 carrying 258 MW.
 - c. Name of the tripped element:
 - 400 kV Orai (UP)-Mainpuri ckt-1
 - 400 kV Bus-1 at Orai (UP)
 - d. As per UP report: No report received
 - e. PMU data of frequency and phase voltages:

227.3 20.07.03.520 20.07.03.520 20.07.04.520 20.07.05.520 20.07.06.520 20.07.07.520 20.07.08.520 20.07.09.520 20.07.03.020 20.07.04.020 20.07.05.020 20.07.06.020 20.07.07.020 20.07.08.020 20.07.09.020

- VBM	- VRM	- VYM
SubstationId: PANK1_UP	SubstationId: PANK1_UP	SubstationId: PANK1_UP
DeviceId: 400BUS1	DeviceId: 400BUS1	DeviceId: 400BUS1


Time	Time Duration (in ms)	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
20:07:05:440	Oms	PMU data					Reference Time
20:07:05:553	115ms	ORAI1_U	400	16MANP1	СВ	disturbe	
20:07:05:555	115ms	ORAI1_U	400	17MNPT3	СВ	disturbe	
20:07:05:700	260ms	ORAI1_U	400	16MANP1	СВ	Open	Main CB of 400 kv Orai-Mainpuri Ckt 1 opens
20:07:06:360	922ms	PMU data					It seems bus bar protection operated
20:07:06:363	925ms	ORAI1_U	400	16MANP1	СВ	Close	
20:07:06:401	960ms	ORAI1_U	400	17MNPT3	СВ	Open	Tie CB of 400 kv Orai-Mainpuri Ckt 1 opens
20:07:06:405	965ms	ORAI1_U	400	13MANPG2	СВ	Open	Main CB of 400 kv Orai-Mainpuri Ckt 2 opens
20:07:06:406	965ms	ORAI1_U	400	07PRIC11	СВ	Open	Main CB of 400 kv Orai-Paricha Ckt 1 opens
20:07:06:407	965ms	ORAI1_U	400	10PRIC11	СВ	Open	Main CB of 400 kV Orai-Paricha Ckt 2 opens
20:07:06:408	970ms	ORAI1_U	400	16MANP1	СВ	Open	Main CB of 400 kV Orai-Mainpuri Ckt 1 opens (400 kV Orai-Mainpuri Ckt 1 tripped}
20:07:06:408	970ms	ORAI1_U	400	22ORAPG2	СВ	Open	Main CB of 400 kV Orai-Orai(PG) Ckt 2 opens
20:07:06:410	970ms	ORAI1_U	400	19ORAPG1	СВ	Open	Main CB of 400 kV Orai-Orai(PG) Ckt 1 opens


f. SCADA SoE data:

- g. As per PMU data:
 - As per PMU, maximum dip in Y-phase.
 - Fault Clearance time: **100ms**
 - SoE captured, it seems all the main CB connected to 400 kV Bus-1 of 400/220 kV Orai (UP) tripped after 900ms of fault occurrence
- h. Preliminary report, DR/EL and detailed report is still awaited from UP.
- 4. Event Description for 29th Nov 2018 event:
 - a. In antecedent condition 400 kV Orai-Parichha ckt-1 was under outage.
 - b. In antecedent condition, 315 MVA ICT 1 carrying 123 MW and 400kV Banda(UP)-Orai(UP) ckt-1 carrying 75 MW.
 - c. Y-N transient nature fault occurred in 400 kV Orai (UP)-Mainpuri ckt-2. Line auto reclosed successfully however during line fault, 400kV Banda(UP)-Orai(UP) ckt-1&2, 400 kV Orai (UP) Bus 2 and

315 MVA ICT 1 at 400/220kV Orai(UP) also tripped due to operation of 400 kV bus bar protection (bus-2) at 400 kV Orai (UP).

- d. 400 kV Banda-Orai (UP) ckt-1&2 tripped as it was connected to only main Bus-2 at Orai (UP). Future bay yet to be commissioned.
- e. 400/220 kV 315MVA ICT-1 tripped as tie CB was already under outage due to outage of 400 kV Orai (UP)-Parichha (UP) ckt-1
- f. Following element connected to 220kV bus-2 of Orai (UP) tripped:
 - 400kV Banda(UP)-Orai(UP) ckt-1
 - 400kV Banda(UP)-Orai(UP) ckt-2
 - 315 MVA 400/220kV ICT 1 at Orai(UP)
 - 400 kV Bus 2 at 400/220kV Orai(UP)
- g. PMU plots of frequency, df/dt and phase voltage:

PMU Plot of phase voltage magnitude at Mainpuri(PG)

h. SCADA SoE data:

Time	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
02:25:56,594	ORAI1_U	400	13MANPG2	Circuit Breaker	disturbe	
02:25:56,597	ORAI1_U	400	14BRMNPG	Circuit Breaker	disturbe	
02:25:56,607	MANP1_U	400	02T1ORI	Circuit Breaker	disturbe	
02:25:56,609	ORAI1_U	400	12T2	Circuit Breaker	disturbe	Main CB of 400kV side ICT 2 (disturb)
02:25:56,609	ORAI1_U	400	06BANDA2	Circuit Breaker	Open	Main CB of 400kV Orai-Banda ckt-2 opens
02:25:56,609	MANP1_U	400	010RAI12	Circuit Breaker	disturbe	
02:25:56,610	ORAI1_U	400	17MNPT3	Circuit Breaker	Open	Tie CB of 400kV Orai-Mainpuri(765kV) ckt-1 opens
02:25:56,610	ORAI1_U	400	15BR	Circuit Breaker	Open	Main CB of 63 MVAR Bus reactor opens.
02:25:56,612	ORAI1_U	400	20SPORA1	Circuit Breaker	Open	Tie CB of 400kV Orai-Orai(PG) ckt-1 opens
02:25:56,612	ORAI1_U	400	09T1	Circuit Breaker	Open	Main CB of 400kV side ICT 1 opens.
02:25:56,613	ORAI1_U	400	23SPORA2	Circuit Breaker	Open	Tie CB of 400kV Orai-Orai(PG) ckt-2 opens
02:25:56,613	ORAI1_U	400	03BANDA1	Circuit Breaker	Open	Main CB of 400kV Orai-Banda ckt-1 opens
02:25:57,299	ORAI1_U	400	13MANPG2	Circuit Breaker	Close	
02:25:57,503	ORAI1_U	400	14BRMNPG	Circuit Breaker	Close	
02:25:57,653	MANP1_U	400	010RAI12	Circuit Breaker	Close	
02:25:57,665	ORAI1_U	400	12T2	Circuit Breaker	Open	Main CB of 400kV side ICT 2 opens.

i. AS per UPPTCL details:

Sub: - Report on the Incident of Multiple Tripping at 400/220KV S/S Orai (UP).

Ref:- NRLDC letter No. NR_GD_GI/1408

On 29.11.2018 at 02:25Hrs. following elements tripped at 400/220KV S/S Orai (UP). Normalization time of the elements is mentioned below:-

Name of Element			Remark
Bus bar – II	29.11.2018	04:26	Busbar protection
400KV Orai – Mainpuri – II	29.11.2018 A/R	-	AR operated (GT, Z-1, Y- phase, dist.72.03km.)
400KV Orai – Banda – I	29.11.2018	04:31	Busbar protection
400KV Orai – Banda – II	29.11.2018	04:31	-do-
315MVA ICT - 1	29.11.2018	04:28	-do-
315MVA ICT – II	29.11.2018	04:28	-do-
	Bus bar – II 400KV Orai – Mainpuri – II 400KV Orai – Banda – I 400KV Orai – Banda – II 315MVA ICT - I	Name of Element Norr Bus bar – II 29.11.2018 400KV Orai – Mainpuri – II 29.11.2018 400KV Orai – Banda – I 29.11.2018 400KV Orai – Banda – I 29.11.2018 315MVA ICT - I 29.11.2018	Bus bar – II 29.11.2018 04:26 400KV Orai – Mainpuri – II 29.11.2018 - 400KV Orai – Banda – I 29.11.2018 04:31 400KV Orai – Banda – I 29.11.2018 04:31 315MVA ICT - I 29.11.2018 04:31

Generation Loss = NIL Load Loss = NIL

As per the information provided by UPPTCL, fault was observed on 400KV Orai – Mainpuri – II line (Z-1, Y- phase, dist.72.03km.). Auto reclose of said line operated as the fault was of transient in nature. At the same time bus bar protection of main bus – II operated at 400KV Orai due to reflection of line fault on the bus, leading to tripping of all above mentioned elements connected to Main Bus – II at 400KV S/S Orai.

The detailed report along with flags, DR/ER and the reason shall be forwarded after receipt from the concerned authority.

- j. As per PMU data:
 - As per PMU, maximum dip in Y-phase.
 - Fault Clearance time: 100ms
 - SoE captured, it seems all the main CB connected to 400 kV Bus-2 of 400/220 kV Orai (UP) tripped within 100ms of fault occurrence
- k. Preliminary report and DR/EL (partial) has been submitted however DR/EL and detailed report is still awaited from UPPTCL.
- 5. Multiple time 400 kV bus bar protection of 400 kV Orai (UP) operated during line fault on outgoing 400 kV feeders. Following are the details of the tripping:

Name of Elements	Owner /	Outa	ige	Event De	
(Tripped/Manually opened)	Agency	Date	Time	(As reported)	per CEA Grid Standards
1) 400 kV Bus 1 at 400kV Orai(UP) 2) 400kV Mainpuri 765(UP)-Orai(UP) ckt- 1	UP	16-Sep-18	20:07	400kV Mainpuri 765(UP)-Orai(UP) ckt-1 tripped on Y-N fault, 34.9Km from Mainpuri 765(UP) end. At the same time, 400 kV Bus 1 at 400kV Orai(UP) also tripped. In antecedent condition, 400kV Mainpuri 765(UP)- Orai(UP) ckt-1 carrying 258 MW. As per PMU, Y-N fault observed.	GL2
1) 400kV Banda(UP)-Orai(UP) ckt-1 2) 315 MVA 400/220kV ICT 1 at Orai(UP) 3) 400 kV Bus 2 at 400/220kV Orai(UP)	UP	29-Nov-18	2:25	400kV Banda(UP)-Orai(UP) ckt-1 tripped on R-N fault. At the same time, 400 kV Bus 2 and 315 MVA ICT 1 at 400/220kV Orai(UP) also tripped. As per PMU, Y-N fault is observed. In antecedent condition, 315 MVA ICT 1 carrying 123 MW and 400kV Banda(UP)-Orai(UP) ckt-1 carrying 75 MW.	GL-2
1) 400kV Mainpuri 765(U)-Orai(UP) ckt-2 2) 400 kV Bus 1 at 400/220kV Orai(UP)	UP	3-Dec-18	2:18	400kV Mainpuri 765(UP)-Orai(UP) ckt-2 & 400 kV Bus 1 at 400/220kV Orai(UP) tripped on R-N fault. As per PMU, R-N fault is observed with unsuccessful autoreclosing attempt. In antecedent condition, 400kV Mainpuri 765(U)-Orai(UP) ckt-2 carrying 76 MW.	
1) 400kV Mainpuri 765(U)-Orai(UP) ckt-2 2) 400 kV Bus 1 at 400/220kV Orai(UP)	UP	9-Dec-18	4:25	400kV Mainpuri 765(UP)-Orai(UP) ckt-2 & 400 kV Bus 1 at 400/220kV Orai(UP) tripped on R-N fault. As per PMU, R-N fault is observed. In antecedent condition, 400kV Mainpuri 765(U)-Orai(UP) ckt-2 carrying 96 MW.	
1) 400kV Mainpuri 765(U)-Orai(UP) ckt-2 2) 400 kV Bus 1 at 400/220kV Orai(UP)	UP	10-Dec-18	20:35	As reported, 400kV Mainpuri 765(UP)-Orai(UP) ckt-2 & 400 kV Bus 1 at 400/220kV Orai(UP) tripped on R-N fault. As per PMU, R-N fault is observed. In antecedent condition, 400kV Mainpuri 765(U)-Orai(UP) ckt- 2 carrying 135 MW.	
1) 400kV Orai(UP)-Paricha(UP)-2 2) 400kV Bus-1 at Orai(UP)	UP	25-Dec-18	2:34	R-N fault occurred in 400kV Orai(UP)-Paricha(UP)-2, 69km from Orai(UP). At Orai(UP), due to bus bar protection operation bus1 tripped. As per PMU data, R-N fault observed with unsuccessful auto-reclosing.	

Points for Discussion:

- 1. <u>Event on 16th Sep 2018:</u>
 - a. Exact location of fault and nature of fault.
 - b. Sequence of tripping needs to be reported and explained.
 - c. Mal-operation of 400 kV Bus Bar Protection (400 kV Bus-1) at 400/220 kV Orai (UP) station during line fault in 400 kV Orai-Mainpuri ckt-1 needs to be looked into.
 - d. Similar incident happened multiple times. Operation of Bus Bar Protection in case of single phase to earth fault is serious cause of concern for grid security. UPPTCL is advised to look into the matter and take corrective action
 - e. Detailed report, remedial measures report and supporting DR/EL needs to be submitted.
 - f. Operation of 400 kV bus bar protection at 400/220 kV Orai (UP) to be reviewed and corrected.
- 2. Event on 29th Nov 2018:
 - a. Exact location of fault and nature of fault.
 - b. Sequence of tripping needs to be reported and explained.

- c. Mal-operation of 400 kV Bus Bar Protection (400 kV Bus-2) at 400/220 kV Orai (UP) station during line fault in 400 kV Orai-Mainpuri ckt-2 needs to be looked into.
- d. Similar incident happened multiple times. Operation of Bus Bar Protection in case of single phase to earth fault is serious cause of concern for grid security. UPPTCL is advised to look into the matter and take corrective action
- e. Detailed report remedial measures report and supporting DR/EL needs to be submitted.
- 3. Bus Bar Protection at 400 kV Orai (UP) needs to be thoroughly checked.
- 4. Remedial measures report for all the other tripping to be submitted.

No representative from UPPTCL (Orai zone) presented during the meeting.

POWERGRID representative informed that similar type of issue faced at 765 kV Phagi station where outage of faulted phase CT during auto reclosing of the line leads to differential current in bus bar differential protection (as that phase was already under outage and CT current was not came into picture, CT was not selected in bus bar protection). It further resulted into operation of bus bar differential protection. CT selection shall be taken from CB closing command.

NRPC raised concern for pending corrective action after multiple tripping at 400kV Orai (UP) and absence of concerned representative in the meeting. NRPC once again suggested all the NR utilities to make nodal officer for overall coordination for information and submission of the information (DR/EL, detailed report) and remedial measures report.

B. Complete outage of 400/220 kV Gorakhpur (UP) at 16:56hrs of 17th Sep and 10:03hrs of 22nd Oct 2018.

Event category: GD-1

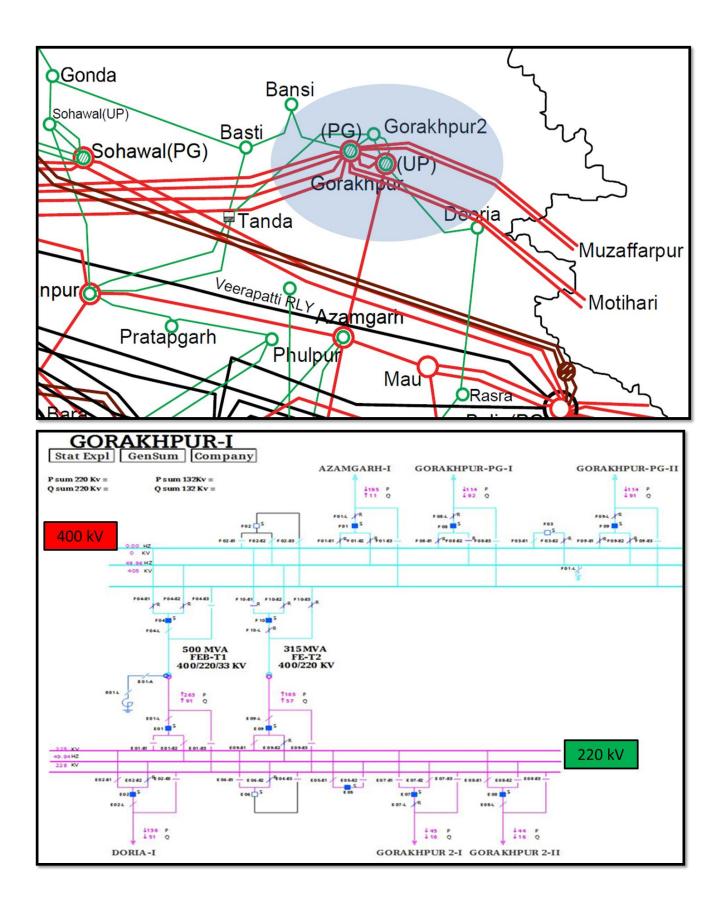
Generation loss:

Nil (17.09.18) Nil (22.10.18) Loss of load: 225 MW (17.09.18) 180 MW (22.10.18)

Energy Loss: UP shall confirm about energy loss 0.36 MU (17.09.18) 0.15 MU (22.10.18)

Data Summary received/available at NRLDC:

Description	Reference	Fault Info	Remarks
Fault Clearance	PMU data	440ms & 440ms	17.09.2018
Time		440ms	22.10.2018
Phase of the fault	PMU data	R-N fault	17.09.2018
Phase of the fault		R-N fault	22.10.2018


Description	Utilities	Status	Remarks
Availability of			17.09.2018
Digital Data (SCADA Data)	Uttar Pradesh	Available	22.10.2018 (Time Synch error)
DR/ EL	Uttar Pradesh	Received (Only Flag	17.09.2018 (DR received from POWERGRID)
		details)	22.10.2018
Preliminary Report	Uttar Pradesh	Received	17.09.2018
		Received	22.10.2018
Detailed Report	Uttar Pradesh	Not Received	17.09.2018
		NOT RECEIVED	22.10.2018

Description Clauses Utility Remarks

Violation of Clauses	 IEGC 5.2.r & 5.9.6.c (VI) CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 43.4.A & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3) CEA (Technical standard for connectivity to the Grid, Amendment Regulation 2013), part- II, B2 CEA Grid Standard 3.1.e CEA Transmission Planning Criteria 	Uttar Pradesh	 DR/EL, Preliminary report within 24hrs Detailed Report Correct operation of Protection System Delayed Clearance of fault Adequately Sectionalized and graded protective relaying system
-------------------------	--	------------------	---

Based on above information description of the events is:

- 400 kV Gorakhpur (UP) is connected with Gorakhpur (PG) D/C, Azamgarh (UP) S/C. It also has 315MVA & 500MVA 400/220 kV ICT. It has DMT (double main transfer breaker) scheme. 220kV Gorakhpur 2 (UP) further connected with 220 kV Tanda (UP) S/C, Gorakhpur (PG) S/C and 400/220 kV Gorakhpur (UP) D/C.
- 2. Connectivity and SLD of 400/220 kV Gorakhpur (UP):

- 3. Event Description for 17th Sep 2018 event:
 - a. During charging of 400KV Gorakhpur(UP)-Gorakhpur(PG) ckt-II through 400 kV transfer bay, R-ph parallel disc insulator of 400 kV transfer bus got damaged causing tripping of all 400 kV feeders, 315MVA ICT-II, 500MVA ICT-I and 220 kV feeders on bus bar protection.
 - b. After isolation of faulty bus section 400 kV feeders, ICTs, 220 kV feeders charged. Then after replacement of damaged disc insulators both 400 kV PGCIL ckts charged at 22:25 & 22:26 hrs respectively.
 - c. Name of the tripped element:
 - 315 MVA ICT 2 at 400kV Gorakhpur(UP)
 - 500 MVA ICT 1 at 400kV Gorakhpur(UP)
 - 400 kV Gorakhpur(PG)-Gorakhpur(UP) ckt-1
 - 400 kV Gorakhpur(PG)-Gorakhpur(UP) ckt-2
 - 400 kV Azamgarh (UP)-Gorakhpur(UP)
 - 220 kV Gorakhpur (UP)-Gorakhpur 2 (UP) ckt-1 & 2
 - 220 kV Gorakhpur-Deoria ckt
 - 220 kV Gorakhpur-Hata ckt

d. As per UP report:

Sub: - Report on the Incident of Simultaneous Tripping at 400KV S/S Gorakhpur.

On 17.09.2018 at 16:57Hrs. all ICTs and 400KV transmission lines connected with 400KV S/S Gorakhpur tripped. Normalization time of the elements is mentioned below:-

SI. No.	Name of Element	Date & tin Normaliz	Remark	
1.	500MVA ICT – I (400/220KV)	17.09.2018	18:41	-
2.	315MVA ICT – II (400/220KV)	17.09.2018	18:33	- 1
3.	400KV Gorakhpur-PG-I	17.09.2018	B/D	
4.	400KV Gorakhpur-PG-II	17.09.2018	B/D	-
5.	400KV Azamgarh	17.09.2018	18:32	-

Generation Loss = NIL

Load Loss = 225 MW Approx.

It has been reported by site authorities that during shifting of 400KV Gorakhpur (PG) - II line on Transfer Bus, R-phase insulator string of TBC snapped causing Bus fault resulting in tripping of 400KV Gorakhpur (PG) I &II , 400KV Azamgarh and 315MVA ICT-2 and 500MVA ICT.

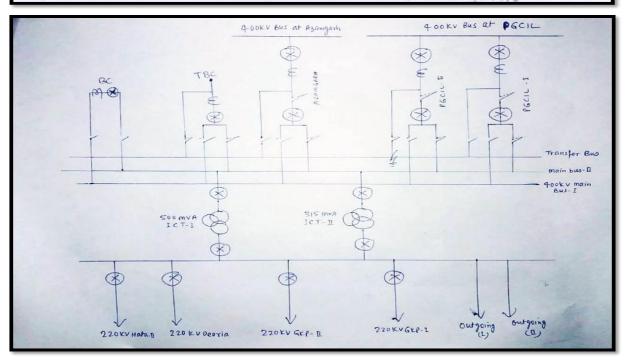
The detailed report along with flags, DR/ER and the reason shall be forwarded after receipt from the concerned authority.

<u>Sub</u>: - <u>Report on the incident of simultaneous tripping of elements at 400kv Gorakhpur at</u> 16:57Hrs. on dt. 17.09.2018 based on the information received from UPPTCL.

Ref:- NRLDC letter No. NR_GD_GI/1365

On 17.09.2018 at 16:57Hrs. all ICTs and 400KV transmission lines connected with 400KV S/S Gorakhpur tripped. Normalization time of the elements is mentioned below:-

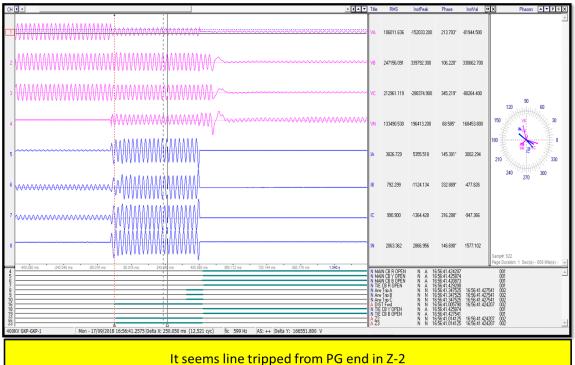
SI. No.	Name of Element	Date & ti Normaliz	. 16	Remark	
1.	500MVA ICT – I (400/220KV)	17.09.2018	18:41		-
2.	315MVA ICT – II (400/220KV)	17.09.2018	18:33		-
3.	400KV Gorakhpur-PG-I	17.09.2018	22:25		-
4.	400KV Gorakhpur-PG-II	17.09.2018	22:26		-
5.	400KV Azamgarh	17.09.2018	18:32		-
6.	220KV Gorakhpur – I	17.09.2018	19:08		-
7.	220KV Gorakhpur – II	17.09.2018	18:57		
8.	220KV Deoria	17.09.2018	18:38		-
9.	220KV Hata - II	17.09.2018	19:11		-

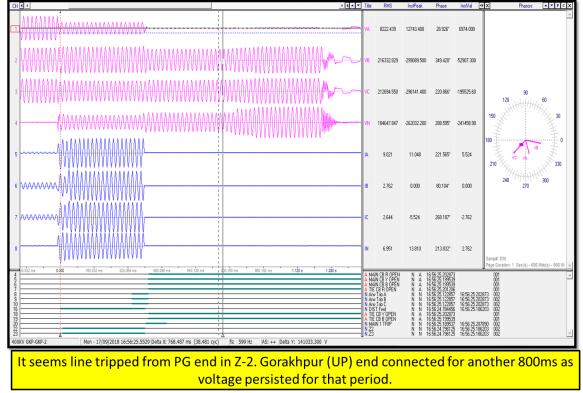

Analysis report of the tripped elements and single line diagram of the relevant portion of the grid is enclosed at annexure.

Analysis:-

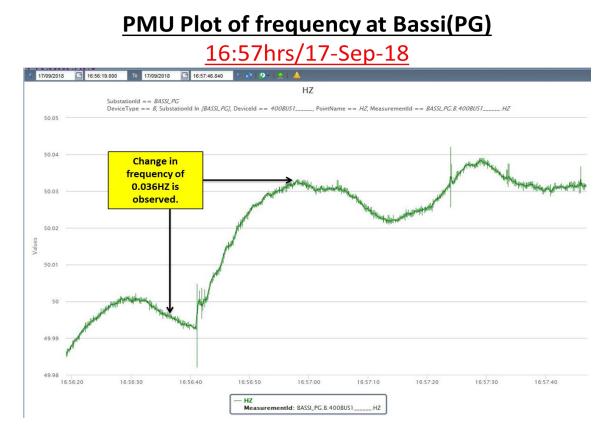
During charging of 400KV Gorakhpur (PG) Ckt. – II through 400KV Transfer Bay due to S/D of main breaker of this line, R phase parallel disc insulator of 400KV Transfer Bus got damaged and fell on the ground causing bus fault. This led to tripping of all 400KV lines, ICTs and all 220KV feeders on bus bar protection.

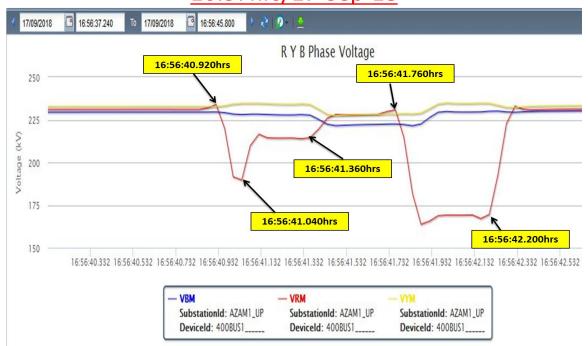
Remedial Measures:-


- Cleaning of main and transfer bus disc insulators and also replacement of old disc insulators is required.
- 2. Thorough protection testing of 400/220KV system at Gorakhpur S/S is required.

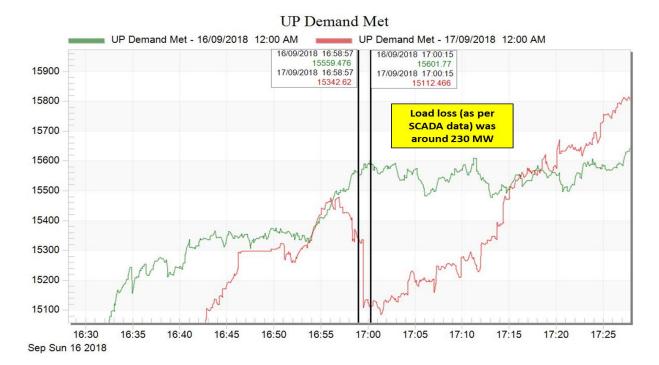

		1) 500 MVA ICT-I :-at 16.00 hrs.	
		i)Load: -199 MW, current: 527 Amp , Voltage: 227 KV.	
		2) 315MVA ICT-II :-at 16.00 hrs.	
		i)Load: -127MW, current: 336 Amp , Voltage: 229 KV.	
		3) 400KV Azamgarh :-at 16.00 hrs.	
		i)Load: -228MW, current: 318 Amp , Voltage: 412 KV.	
		4) 400KV PGCIL-I :-at 16.00 hrs.	
		i)Load: -47MW, current: 111Amp , Voltage: 408 KV.	
	Antecedent conditions of load and	5) 400KV PGCIL-II :-at 16.00 hrs.	
	generation , including frequency , voltage	i)Load: -47MW, current: 112Amp , Voltage: 408 KV.	
5	and the flows in the affected area at the	6) 220KV Deoria :-at 16.00 hrs.	
5		i)Load: +110 MW, current: 290 Amp , Voltage: 229 KV.	
	time of tripping including weather	7)220KV Gorakhpur-I :-at 16.00 hrs.	
		i)Load: +16 MW, current: 53 Amp , Voltage: 227 KV.	
		8)220KV Gorakhpur-II :-at 16.00 hrs.	
		i)Load: +16 MW, current: 53Amp , Voltage: 228 KV.	
		9) 220KV Out going-I :-at 16.00 hrs.	
		i)Load: +71 MW, current: 195 Amp , Voltage: 228 KV.	
		10) 220KV Out going-II :-at 16.00 hrs.	
		i)Load: +75 MW, current: 195 Amp , Voltage: 228 KV.	
		11) 220KV Hata-II :-at 16.00 hrs.	
		i)Load: +00 MW, current: 10 Amp , Voltage: 225 KV.	
		Weather condition: Clear	
		Affected Area: Town supply of Deoria, Kushinagar,	
		Maharjganj,partially tehsil & rural supply of Gorakhpur,	
		Deroia, Kushinagar and Maharajganj districts.	
		1) 500MVA - 01 hrs.45 minutes	
		2) 315MVA - 01 hrs 37 minutes	
		3) 400KV Azamgarh- 01 hr 35 minues	
		4) 400KV PGCIL Ckt-I- 05 hr 28minutes	
	Duration of interruption and Demand	5)400KV PGCIL Ckt-II- 05 hr 29 minutes	
6	and / or Generation (in MW and MWh)	6) 220KV Deoria - 01 hrs 41 minutes	
	interrupted	7) 220KV Gorakhpur-I - 02 hrs 11 minutes	
		8) 220KV Gorakhpur-II - 02 hrs 00minutes	
		9) 220KV Hata-II - 02 hrs 14 minutes	
		10) 220KV Outgoing-I - 01 hrs 41 minutes	
		11) 220KV outgoing-II - 01 hrs 41 minutes	

SI.No.	Name of Feeder	Tripping Date	Restoration		Details of Flag	Analysis	Remark
51.110.	Name of Feeder	& Time	date & Time	Control Panel	Relay Panel	Allarysis	Remark
			HV side- 18.41 hrs	HV side:			
			LV Side-	VT fail, Directional			
			18.42 hrs	O/C & E/F optd			
1	500 MVA ICT-I			Gr A trip relay optd	MTR -186,286		
				Gr B trip relay optd			
				LV side:		At 400KV S/S UPPTCL	
				Gr B trip relay 86B	MTR -286	Gorakhpur -	
						During charging of 400KV	
			HV side-	HV side:		UPPTCL -PGCIL Gorakhpur ckt-II	
			18.33 hrs	ITV SIGE:		through 400KV transfer bay , R-	
			LV Side-	Gr A,B trip relay	86A1,86A2,86B1,86B2	ph parallel disc insulator of	
					Directional O/C &E/F with LBB pton	400KV Transfer bus got	
2	315 MVA ICT-II				INV HS E/F	damaged causing tripping of all	
		17.09.18 at		LV side:		400KV feeders, 315MVA ICT-II,	
		16.57 hrs		BB protn optd	96	500MVA ICT-I and 220KV	
				master trip relay optd.	MTR 86	feeders on bus bar protection. After isolation of faulty bus	
3	400 kV Bus Bar Protn panel		18.32 hrs		BBR-87,Z2,	section 400KV feeders , ICTs, 220KV feeders charged. Then	
4	400 kV Azamgarh		18.32 hrs	A/R block, BB optd	186A,186B,96	after replacement of damaged	
5	400 kV PGCIL ckt-I		22.25 hrs	main-1/2 CR, Direct trip recive Ch-I/II, CB trouble alarm, CB auto trip,	52X1 Δ/B BP1B- cont	disc insulators both 400KV PGCIL ckts charged at 22:25 & 22:26 hrs. respectively.	
6	400 kV PGCIL ckt-l		22.26 hrs	CB trouble alarm, carrier channel alarm	RP2C- CB trouble protn realy 52X1 A/B, cont multi relay 30KL, RP2B- cont multi relay 30 R2/F2, 30MN, RP2A- cont multi relay 30R1/F1, main -l distannce protn relay- R,Y,B- ph E/F pick up,		
7	220 kV Bus Bar Protn panel		18.34 hrs.		BBR- 87, Z1		
				BB protn optd	96 optd.		
8	220 kV Gorakhpur -I		19.08 hrs	Auto reclose lock	186A,186B		
				out optd.	1004,1000		
9	220 kV Gorakhpur -		18.57 hrs	BB protn optd	BB relay 96, 67N/50LBB		
9	11			Master trip relay			
10	220 kV Deoria		18.38 hrs	186 , 286optd., LBB optd	186,286		
11	220 kV Hata -II		19.11 hrs	96 optd, VT fail	VT fail		


DR details of 400 kV Gorakhpur PG(end)-Gorakhpur UP ckt-1


DR details of 400 kV Gorakhpur PG(end)-Gorakhpur UP ckt-2

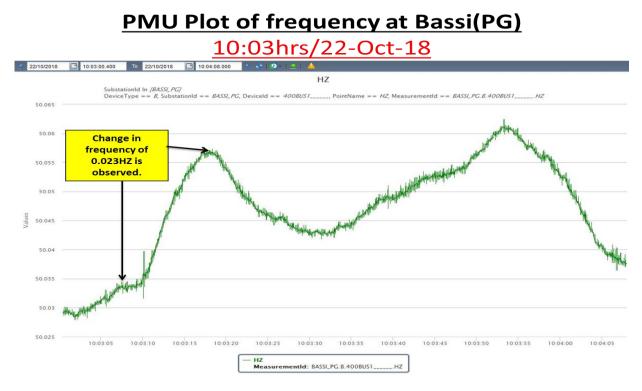
e. PMU data of frequency and phase voltages:

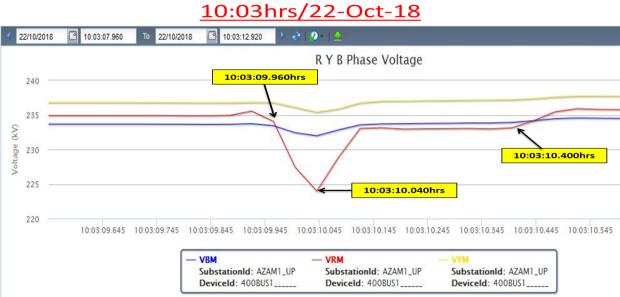

PMU Plot of phase voltage magnitude at Azamgarh(UP) <u>16:57hrs/17-Sep-18</u>

Time	Time Duration (in ms)	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
16:56:40:920	0ms	PMU data					Reference Time
16:56:40:575		GRK_1_UP	400kV	F_08(GRKPR-1)	Circuit Breaker	Open	Main CB of 400kV Gorakhpur(UP)- Gorakhpur(PG) Ckt-1 opens
16:56:40:993	70ms	GRK_1_UP	400kV	10T2	Circuit Breaker	Open	400kV Side Main CB of 315 MVA ICT 2 at Gorakhpur(UP) opens.
16:56:41:016	95ms	GRK_1_UP	220kV	E_02(DORIA)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-Dorai(UP) opens
16:56:41:018	100ms	GRK_1_UP	220kV	09T2	Circuit Breaker	Open	220kV Side Main CB of 315 MVA ICT 2 at Gorakhpur(UP) opens.
16:56:41:022	100ms	GRK_1_UP	220kV	E_01(T1)	Circuit Breaker	Open	220kV Side Main CB of 500 MVA ICT 1 at Gorakhpur(UP) opens.
16:56:41:022	100ms	GRK_1_UP	220kV	E_07(GRK_2-1)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)- Gorakhpur2(UP) ckt-1 opens
16:56:41:025	105ms	GRK_1_UP	220kV	14HATA2	Circuit Breaker	Open	
16:56:41:027		GRK_1_UP	220kV	05MBC	Circuit Breaker	Open	220kV Side Bus coupler opens.
16:56:41:042	120ms	GRK_1_UP	220kV	E_08(GRK_2-2)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)- Gorakhpur2(UP) ckt-2 opens
16:56:41:760	840ms	PMU data					Again voltage dip
16:56:42:200	1280ms	PMU data					Voltage recovered
16:57:00:015	19 second	AZAM1_UP	400kV	16GRK1	Circuit Breaker	Open	Main CB of 400kV Azamgarh(UP)- Gorakhpur(UP) Ckt opens

f. SCADA SoE and Analog data:

UP Demand pattern during tripping

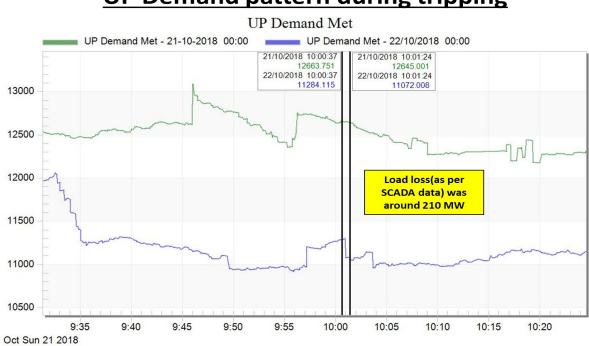



- g. As per PMU data:
 - As per PMU, maximum dip in R-phase. Two voltage dip captured
 - Fault Clearance time: 440ms & 440ms
 - SoE captured, it seems all the 400kV elements tripped within 100ms of fault occurrence except 400 kV Azamgarh-Gorakhpur ckt
- h. As per DR and flag details:
 - 400 kV Gorakhpur PG (end)-Gorakhpur UP ckt-1 tripped in Z-2.
 - 400 kV Gorakhpur PG (end)-Gorakhpur UP ckt-2 tripped in Z-2 however Gorakhpur(UP) end tripped after 800ms of tripping from Gorakhpur PG end.
 - 500 MVA ICT at Gorakhpur (UP) tripped on back up protection within 100ms
- i. Preliminary report and Flag details has been received but DR/EL and detailed investigation report along with remedial measures report is still awaited from UP.

4. Event Description for 22nd Oct 2018 event:

- a. 400 kV Gorakhpur (UP) is connected with Gorakhpur (PG) D/C, Azamgarh (UP) S/C. It also has 315MVA & 500MVA 400/220 kV ICT. It has DMT (double main transfer breaker) scheme. 220kV Gorakhpur 2 (UP) further connected with 220 kV Tanda (UP) S/C, Gorakhpur (PG) S/C and 400/220 kV Gorakhpur (UP) D/C.
- b. 220 kV Gorakhpur 2 (UP)-Tanda line tripped at 10:05hrs on 220 kV Gorakhpur 2 (UP) & at the same time 220 kV side bus bar protection operated at 400/220 kV Gorakhpur (UP) causing tripping of all connected 220 kV feeders,315MVA ICT-II and 500MVA ICT-I.
- c. During checking it was found that during normal condition bus bar protection CT core B-phase current is higher than twice times with respect to R&Y-phases current on 220 kV Gorakhpur-Gorakhpur ckt-I. Hence bus bar protection CT core cable for above feeder between CT JB (junction box) to bus bar protection panel replaced on dated 22.10.2018 and observed balance current for all three phases.
- d. Following element connected to 220kV bus of 400/220 kV Gorakhpur (UP) tripped:
 - 315 MVA ICT 2 at 400kV Gorakhpur(UP)
 - 500 MVA ICT 1 at 400kV Gorakhpur(UP)

- 220 kV Gorakhpur 2 (UP)-Tanda (UP)
- 220 kV Gorakhpur 2 (UP)-Gorakhpur (PG) ckt
- 220 kV Gorakhpur (UP)-Gorakhpur 2 (UP) ckt-1 & 2
- 220 kV Gorakhpur-Deoria ckt
- 220 kV Gorakhpur-Hata ckt
- e. PMU plots of frequency and phase voltage:



f. SCADA SoE data:

Time	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks		
10:03:09:199	GRK_1_UP	220kV	E_07(GRK_2-1)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-Gorakhpur2(UP) ckt- 1 opens		
10:03:09:200	GRK_1_UP	220kV	05MBC	Circuit Breaker	Open	220kV Side Bus coupler opens.		
10:03:09:200	GRK_1_UP	220kV	E_02(DORIA)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-Dorai(UP) opens		
10:03:09:201	GRK_1_UP	220kV	E_01(T1)	Circuit Breaker	Open	220kV Side Main CB of 500 MVA ICT 1 at Gorakhpur(UP) opens.		
10:03:09:205	GRK_1_UP	220kV	14HATA2	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-HATA ckt opens		
10:03:09:209	GRK2N_UP	220kV	E_03(EXTN1)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-Gorakhpur New(UP)(end) ckt-1 opens		
10:03:09:213	GRK2N_UP	220kV	E_04(EXTN2)	Circuit Breaker	disturbe	Main CB of 220kV Gorakhpur(UP)-Gorakhpur New(UP)(end) ckt-2 opens		
10:03:09:217	GRK_1_UP	220kV	E_08(GRK_2-2)	Circuit Breaker	Open	Main CB of 220kV Gorakhpur(UP)-Gorakhpur2(UP) ckt- 2 opens		
10:03:09:218	GRK_1_UP	400kV	10T2	Circuit Breaker	Open	400kV Side Main CB of 315 MVA ICT 2 at Gorakhpur(UP) opens.		
10:03:09:222	GRK_1_UP	220kV	09T2	Circuit Breaker	Open	220kV Side Main CB of 315 MVA ICT 2 at Gorakhpur(UP) opens.		

PMU Plot of phase voltage magnitude at Azamgarh(UP)

UP Demand pattern during tripping

g. AS per UPPTCL details:

<u>Sub:</u> - <u>Report on the Incident of Simultaneous Tripping</u> at 400KV S/S Gorakhpur. <u>Ref:-</u>NRLDC letter No. NR_GD_GI/1393

On 22.10.2018 at 10:05Hrs. all 400/220KV ICTs and 220KV transmission lines connected with 400KV S/S Gorakhpur tripped. Normalization time of the elements is mentioned below:-

SI. No.	Name of Element	Date & ti Normaliz		Remark
1.	500MVAICT-I (400/220KV)	22.10.18	10:54	Bus bar protection operated
2.	315MVAICT-II (400/220KV)	22.10.18	10:47	-do-
3.	220KV Deoria line	22.10.18	10:54	-do-
4.	220KV Gorakhpur – I line	22.10.18	11:03	-do-
5.	220KV Gorakhpur – II line	22.10.18	11:04	-do-
6.	220KV Hata – II line	22.10.18	12:23	-do-

Generation Loss = NIL

Load Loss = 180 MW Approx.

It has been reported by site authorities that 220KV Gorakhpur – Tanda line tripped due to line fault caused by snapping of (Disc insulator) simultaneously 220KV bus bar protection also operated resulting into Blackout at 220KV Gorakhpur.

The detailed report along with flags, DR/ER and the reason shall be forwarded after receipt from the concerned authority.

Ref:- NRLDC letter No. NR_GD_GI/1393

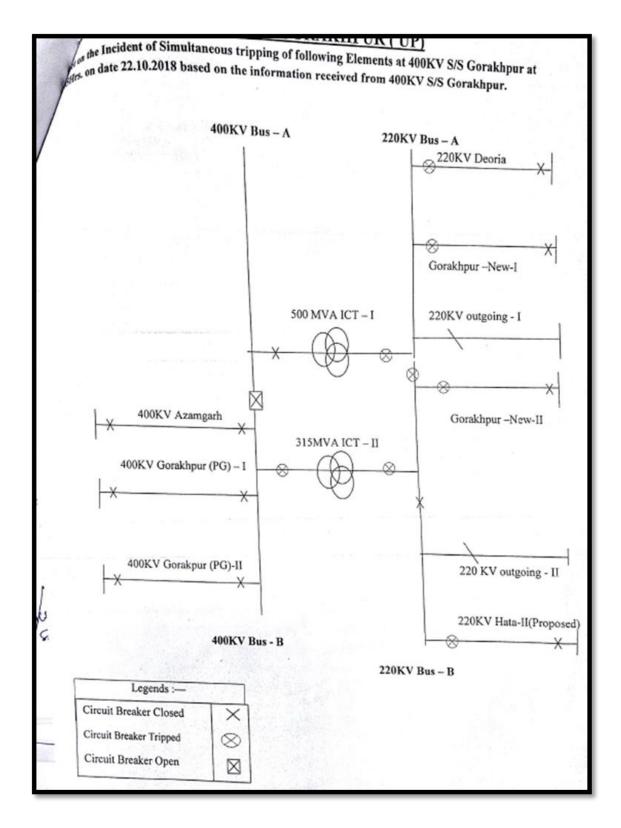
On 22.10.2018 at 10:05Hrs. all 400/220KV ICTs and 220KV transmission lines connected with 400KV S/S Gorakhpur tripped. Normalization time of the elements is mentioned below:-

Sl. No.	Name of Element	Date & time Normalizatio	Remark	
1.	500MVA ICT – I (400/220KV)	22.10.18	10:54	Bus bar protection operated
2.	315MVAICT – II (400/220KV)	22.10.18	10:47	-do-
3.	220KV Deoria line	22.10.18	10:54	-do-
4.	220KV Gorakhpur – I line	22.10.18	11:03	-do-
5.	220KV Gorakhpur – II line	22.10.18	11:04	-do-
6.	220KV Hata – II line	22.10.18	12:23	-do-
7.	220KV Bus coupler	22.10.18	10:48	-do-
8.	220KV outgoing - II	22.10.18	10:48	Isolator open
9.	220KV outgoing - I	22.10.18	10:48	-do-

Analysis report of the tripped elements, single line diagram of the relevant portion of the grid is enclosed at annexure.

Analysis:-

220KV Barahua Gorakhpur – Tanda line tripped at 10:05Hrs. on 220KV S/S Barahua Gorakhpur & at the same time 220KV side bus bar protection operated at 400KV S/S Gorakhpur causing tripping of all connected 220KV feeders, 500MVA ICT – I and 315MVA ICT – II.


During testing it was found that the protection cable between C.T Junction box to bus bar protection panel found defective due to which bus bar protection operated, Causing Blackout at 220KV Portion of 400/220KV S/S Gorakhpur.

Remedial Measures:-

- Bus bar protection C.T cable replaced from C.T Junction box to bus bar protection panel of 220KV Gorakhpur – Tanda Ckt. on 22.10.2018
- 2. Thorough testing of the protection system at 400KV S/S Gorakhpur is required.

	Antone doub one distance of local and and and	
	Antecedent conditions of load and generation	1)500 MVA ICT-I :-at 10.00 hrs. i)Load: -
5	, including frequency , voltage and the flows in the affected area at the time of tripping	127 MW, current: 322 Amp , Voltage: 230 KV.
	a nected area at the time of tripping	2)315MVA ICT-II :-at 10.00 hrs. i)Load: -
		80 MW, current: 205 Amp , Voltage: 234 KV.
		,
		3)220KV Deoria :-at 10.00 hrs. i)Load: -
	×	100 MW, current: 302 Amp , Voltage: 230 KV.
		1100010100
		4)220KV Gorakhpur-I :-at 10.00 hrs.
		i)Load: 21 MW, current: 54 Amp , Voltage: 230KV.
		5)220KV Gorakhpur-II :-at 14.00 hrs.
		i)Load: 22 MW, current: 57 Amp , Voltage:
		230 KV.
		6)220KV Out going-I :-at 10.00 hrs.
		i)Load:31 MW, current: 84 Amp , Voltage: 233
		KV.
		7)220KV Out going-II :-at 10.00 hrs.
		i)Load: 35 MW, current: 90 Amp , Voltage:
		230 KV.
		8)220KV Hata-II :-at 10.00 hrs. i)Load: -
		00 MW, current: 10 Amp , Voltage: 231 KV.
		Affected Area: Partial Town & rural supply of
	e	Gorakhpur, town& rural supply of Deroia,
		Kushinagar and Maharajganj districts.
		Weather condition: Clear

Luns				Gorakhpur on dated 22 Details	of Flag		Remark	
	Name of Feeder	Tripping Date & Time	Restoration date & Time	Control Panel	Relay Panel	Analysis		
SI.No.	Name officers	and the second s	LV Side-10.54 hrs	HV side:		220KV Barahua Gorakhpur- Tanda		
1	500MVA ICT-I	22.10.18 at	LV Side-10.54 mg	LV side:		line tripped at 10.05 hrs on 220kv		
		10.05 hrs		BB protn optd		S/S Barahua Gorakhpur & at the same time 220KV side bus bar		
			HV side- 10.47 hrs		N.			
2	315 MVA ICT-II		LV Side-10.49 hrs	Gr A, B optd	86A1,86A2,86B1,86B2	protection operated at 400KV S/S		
100			LV Side-10.45 mil	LV side:	4	Gorakhpur causing tripping of all		
1.1				BB protn optd	96 optd.	connected 220KV feeders ,		
				master trip relay optd.	MTR 86	500MVA ICT-I and 315MVA ICT-		
			11.03 hrs	BB protn optd	96 optd.	II.During checking it was found that		
3	220KV Gorakhpur -I		11.03 103	Auto reclose lock out optd.	186A,186B	during normal condition bus bar protection CT core B-ph current is higher than twice times with	protection CT core B-ph current is higher than twice times with	
			an other	BB protn optd				higher than twice times with
4	220KV Gorakhpur -II		11.04 hrs	bo prote op		respect to R& Y-phases current on		
		-	10.54 hrs	BB protn optd	441	220KV Gorakhpur-Gorakhpur		
5	220KV Deoria	-	10.54 hrs	96 optd		Circuit-I. Hence Bus bar protection		
б	220KV Hata -II	-	12.25105	Jo option	BB- B phase -87, Z1	CT core cable for above feeder		
7	220KV Bus Bar Protn panel		11.02 hrs taken ir Ckt.		96TR1,96TR2, 96TR4,96TR5,96TR6, 96TR8,96TR9,96TR11	between CT JB to Bus Bar protection panel replaced on dated 22.10.2018 and observed balance current for all three phases.		

- h. As per PMU data:
 - As per PMU, maximum dip in R-phase.
 - Fault Clearance time: 440ms

- SoE captured, it seems time synch error. (Tripping time captured in SCADA SoE is 800ms before the actual fault time (PMU reference time)
- i. All 220kV elements connected to 400/220 kV Gorakhpur (UP) tripped.
- j. <u>Remedial Measures taken</u>: Bus bar protection CT core cable for 220 kV Gorakhpur (UP)-Gorakhpur2 (UP) ckt-1 between CT JB (junction box) to bus bar protection panel replaced on dated 22.10.2018 and observed balance current for all three phases.
- k. Preliminary report and flag details has been submitted however DR/EL and detailed report is still awaited from UPPTCL.

UP representative informed during the meeting:

- 1. Event on 17th Sep 2018:
 - a. Exact location of fault and nature of fault: Fault was on 400 kV transfer bus at 400/220 kV Gorakhpur (UP)
 - b. Sequence of tripping needs to be reported and explained.
 - c. Reason of delayed clearance of fault: Yet to be ascertained
 - d. Operation of bus bar protection for both 400 kV buses at Gorakhpur (UP) needs to be relooked: 400 kV Bus Bar Protection at 400/220 kV Gorakhpur (UP) was under outage
 - e. Delayed clearance of fault more than 400ms in case of operation of instantaneous bus bar protection operation also to be checked.
 - f. Healthiness of bus bar protection of 400/220 kV Gorakhpur (UP) needs to be ensured: Bus Bar Protection was healthy but under outage due to mistake of commissioning engineer during upgradation of ICT at Gorakhpur (UP)
 - g. Back up over current earth fault protection of 500MVA ICTs needs to be looked into: *ICT tripped on backup over current earth fault protection.*
 - h. Reason of tripping of 400 kV Gorakhpur (UP)-Gorakhpur (PG) ckts needs to be explained. (From PG end these ckts tripped in Z-2): *To be looked into*
 - i. SCADA SoE (not received) of tripping of 400 kV Gorakhpur (UP) end-Azamgarh ckt.
 - j. Status of availability of DR/EL and extracting software needs to be shared: *Alstom make event logger (EL) was not in service*

- k. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL
- I. Apart from aforesaid points following are the useful information relayed to the tripping
 - 500MVA ICT was newly commissioned at 400/220 kV Gorakhpur (UP). For connection of bus bar protection for 500MVA ICT, bus bar protection was taken under test mode (one day before) and it was inadvertently remain in test mode.
 - At the time of incident, 400 kV bus bar protection at 400/220 kV Gorakhpur (UP) was not operated.
 - Alstom make event logger (EL) was not in service.
 - Manual error during upgradation work. Operating procedure/ check list for upgradation work at 400 kV Gorakhpur (UP) didn't follow.
 - Operation of SEL make 220 kV bus bar protection at 400/220 kV Gorakhpur (UP) end needs to be checked.
- 2. Event on 22nd Oct 2018:
 - a. Exact location of fault and nature of fault: *Fault was in 220 kV Gorakhpur 2-Tanda (UP) ckt.*
 - b. Sequence of tripping needs to be reported and explained.
 - c. Reason of delayed clearance of fault.
 - d. Operation of 220 kV bus bar protection during fault in outgoing line (220kV Gorakhpur-Tanda ckt) from adjacent 220 kV Gorakhpur 2 (UP) needs to be looked into: One of the cable from CT JB to bus bar protection found earthed and B-phase current reading was double than normal current. It may be the reason of operation of 220 kV Bus Bar Protection during through fault condition. Damaged cable has been already replaced and after replacement no bus bar protection operated for through fault condition.
 - e. Operation of bus bar protection for both 220 kV buses at 400/220 kV Gorakhpur (UP) needs to be relooked.
 - f. Delayed clearance of fault more than 400ms in case of operation of instantaneous bus bar protection operation also to be checked.
 - g. Healthiness of 220 kV bus bar protection of 400/220 kV Gorakhpur (UP) needs to be ensured.
 - h. Time synchronization of SCADA SoE to be checked and corrected.
 - i. Status of availability of DR/EL and extracting software needs to be shared.

- j. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL.
- 3. Bus Bar Protection of both side of 400/220 kV Gorakhpur (UP) needs to be thoroughly checked.

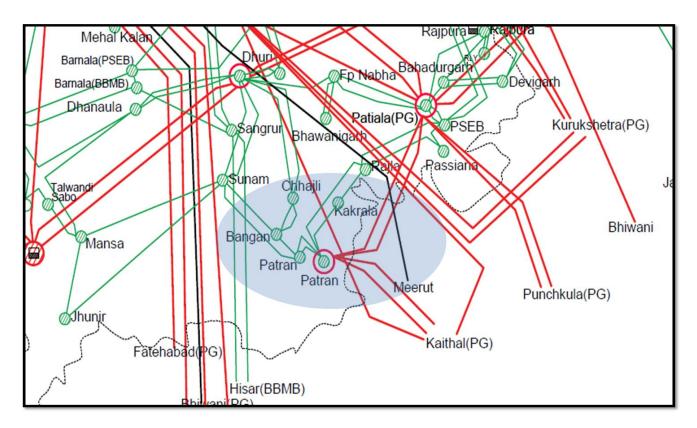
UPPTCL submit the detailed report and remedial measures report.

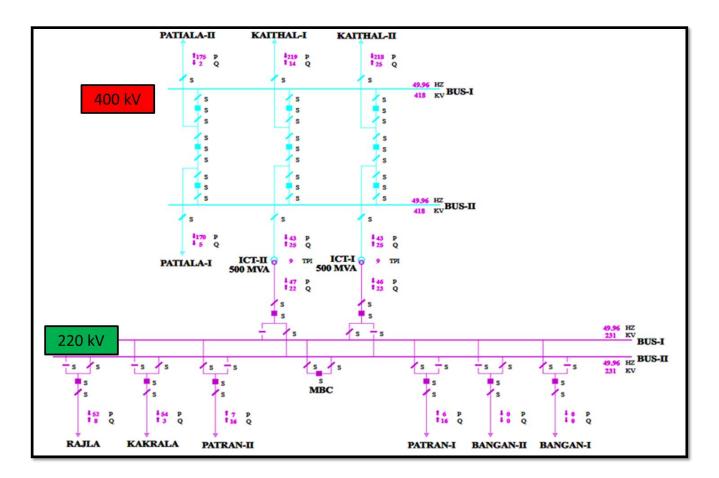
C. Multiple Element tripping at 400/220 kV Patran substation at 11:11 hrs of 18th Sep 2018.

Event category: GI-2 Generation loss: Nil Loss of load: Nil Energy Loss: Nil

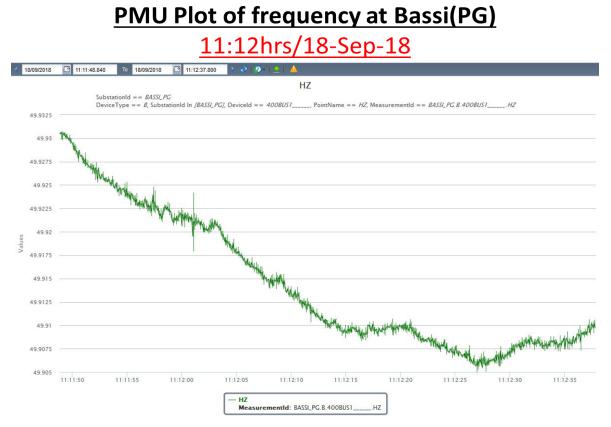
Data Summary received/available at NRLDC:

Description	Reference	Fault Info	Remarks
Fault Clearance Time	As per PMU data	No fault	No fault in the system
Phase of the fault	As per PMU data	NA	

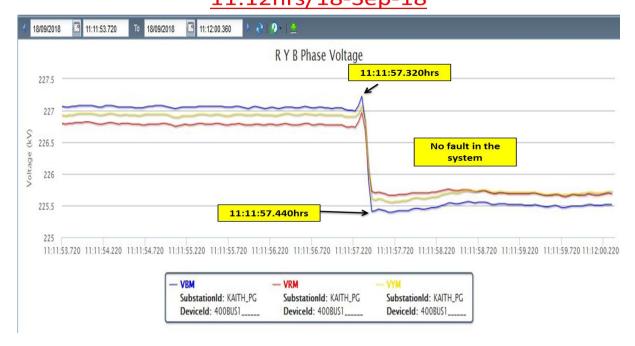

Description	Utilities	Present Status	Remarks
Availability of Digital Data (SCADA Data)	NR	Available	
	PTCL	Received	
DR/ EL	Punjab	NA	
	POWERGRID	Received	
	PTCL	Received	
Preliminary Report	Punjab	Not Received	
	POWERGRID	Received	
Detailed Denart	PTCL	Not Received	
Detailed Report	Punjab	Not Received	


Description Clauses	Utility	Remarks
---------------------	---------	---------

Violation of Clauses	 CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 43.4.A & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3, 6.4) CEA Grid Standard 3.1.e CEA Transmission Planning Criteria 	PTCL	 Detailed Report didn't provide Adequately Sectionalized and graded protective relaying system Incorrect/mis-operation / unwanted operation of Protection system
	1. IEGC 5.2.r & 5.9.6.c (VI) 2. CEA grid Standard 15.3	Punjab	 DR/EL, Preliminary report within 24hrs Detailed Report not received


Based on above information description of the events is:

1. Connectivity Diagram of 400/220 KV Patran substation:



- 400 kV Patran s/s is connected with 400 KV Patiala D/C, 400 KV Kaithal D/C and has two 500MVA 400/220 kV ICT's. It has one and half breaker scheme at 400 kV level and DM (double main) scheme at 220 kV level.
- 3. At 11:11:57 all 400 lines and both 500 MVA ICTs at 400/220 kV Patran station tripped.
- 4. The DR and event loggers are showing DC supply fail signal only with no tripping signal issued.
- 5. Antecedent Condition:
 - 400 kV Patran-Kaithal ckts were carrying 139 MW each.
 - 400 kV Patran-Patiala ckts were carrying 68 MW each.
- 6. Name of the tripped elements are as below:
 - 400 kV Patran Kaithal ckt-1 & 2
 - 400 kV Patran Patiala ckt-1 & 2
 - 500 MVA 400/220 kV ICT 1 & 2
- 7. PMU plot of frequency and phase voltages:

PMU Plot of phase voltage magnitude at Kaithal(PG) 11:12hrs/18-Sep-18

8. As per SCADA SoE:

Time	Time Duration (in ms)	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
11:11:57:320	Oms	PMU data					Reference Time
11:11:57:345	25ms	PATRN_P	220	07T2	Circuit Breaker	Open	220kV side Main CB of 500MVA ICT2 at Patran opens
11:11:57:345	25ms	PATRN_P	220	07T2	Circuit Breaker	Disp	
11:11:57:346	25ms	PATRN_P	400	04KATHL1	Circuit Breaker	Open	Main CB of 400kV Patran(end)-Kaithal ckt-1 opens
11:11:57:346	25ms	PATRN_P	400	04KATHL1	Circuit Breaker	Disp	
11:11:57:349	30ms	PATIALA	400kV	14PA2LD2	Circuit Breaker	Open	Tie CB of 400kV Patiala(end)-Patran ckt-2 & 400kV Patiala(end)-Ludhiana ckt-2 opens
11:11:57:350	30ms	PATRN_P	400	09T1	Circuit Breaker	Open	400kV side Main CB of 500MVA ICT1 at Patran opens
11:11:57:350	30ms	PATRN_P	400	09T1	Circuit Breaker	Disp	
11:11:57:351	30ms	KAITHAL	400kV	11PA1BG2	Circuit Breaker	Open	Tie CB of 400kV Kaithal(end)-Patranckt-1 & 400kV Kaithal(end)-Baghpat ckt-2 opens
11:11:57:351	30ms	PATRN_P	400	08KAT2T1	Circuit Breaker	Open	Tie CB of 400kV Patran(end)-Kaithal ckt-2 & 500MVA ICT1 opens
11:11:57:351	30ms	PATRN_P	400	08KAT2T1	Circuit Breaker	Disp	
11:11:57:352	30ms	PATIALA	400kV	13PATRN2	Circuit Breaker	Open	Main CB of 400kV Patiala(end)-Patran ckt-2 opens
11:11:57:352	30ms	KAITHAL	400kV	10PATRN1	Circuit Breaker	Open	Main CB of 400kV Kaithal(end)-Patranckt-1 opens
11:11:57:360	40ms	PATIALA	400kV	2PA1MLE	Circuit Breaker	Open	Tie CB of 400kV Patiala(end)-Patran ckt-1 & 400kV Patiala(end)-Malerkotla opens
11:11:57:362	40ms	PATIALA	400kV	1PATRN1	Circuit Breaker	Open	Main CB of 400kV Patiala(end)-Patran ckt-1 opens
11:11:59:902	2580ms	PATRN_P	400	06T2	Circuit Breaker	disturbe	
11:11:59:902	2580ms	PATRN_P	400	06T2	Circuit Breaker	Disp	
11:12:00:079	2760ms	PATRN_P	400	02PAT12	Circuit Breaker	Open	Tie CB of 400kV Patran(end)-Patiala ckt-1 & 400kV Patran(end)-Patiala ckt-2 opens
11:12:00:079	2760ms	PATRN_P	400	02PAT12	Circuit Breaker	Disp	
11:12:00:081	2760ms	PATRN_P	400	06T2	Circuit Breaker	Open	400kV side Main CB of 500MVA ICT2 at Patran opens
11:12:00:084	2765ms	PATRN_P	220	04T1	Circuit Breaker	Open	220kV side Main CB of 500MVA ICT1 at Patran opens
11:12:00:084	2765ms	PATRN_P	220	04T1	Circuit Breaker	Disp	
11:12:00:086	2765ms	PATRN_P	400	05KAT1T2	Circuit Breaker	Open	Tie CB of 400kV Patran(end)-Kaithal ckt-1 & 500MVA ICT2 opens
11:12:00:086	2765ms	PATRN_P	400	05KAT1T2	Circuit Breaker	Disp	
11:12:00:090	2770ms	PATRN_P	220	10RJLA	Circuit Breaker	Disp	
11:12:00:094	2775ms	PATRN_P	400	03PATIA1	Circuit Breaker	Open	Main CB of 400kV Patran(end)-Patiala ckt-1 opens
11:12:00:094	2775ms	PATRN_P	400	03PATIA1	Circuit Breaker	Disp	
11:12:00:095	2775ms	PATRN_P	400	07KATHL2	Circuit Breaker	Open	Main CB of 400kV Patran(end)-Kaithal ckt-2 opens
11:12:00:095	2775ms	PATRN_P	400	07KATHL2	Circuit Breaker	Disp	
11:12:00:098	2780ms	PATRN_P	400	01PATIA2	Circuit Breaker	Open	Main CB of 400kV Patran(end)-Patiala ckt-2 opens

9. As per PMU data:

• No fault in the system

10. Patran SoE data:

#	Activation time (YT+YM)	Station	Bay	Device	Object Text	Status	A
131	2018-09-18 11:12:00.068	PATRAN	SUX	BCU	48∨ battery charger1 float on	Alarm	
132	2018-09-18 11:12:00.080	PATRAN	404	BCU	Drive remote control	Alarm	
133	2018-09-18 11:12:00.159	PATRAN	406	BCU	Line PT reset	Alarm	
134	2018-09-18 11:12:18.652	PATRAN	403	BCU	Drive remote control	Alarm	
135	2018-09-18 11:12:18.653	PATRAN	406	BCU	Drive remote control	Alarm	
136	2018-09-18 11:12:00.090	PATRAN	407	PLCC	Direct Trip Send Channel-1	Normal	
137	2018-09-18 11:12:00.134	PATRAN	204	BCU	Bph Trip coil-1 faulty	Normal	
138	2018-09-18 11:12:00.138	PATRAN	207	BCU	Rph Trip coil-1 faulty	Normal	
139	2018-09-18 11:12:00.176	PATRAN	206	BCU	DC1 fail	Normal	
140	2018-09-18 11:12:00.163	PATRAN	206	BCU	Rph Trip coil-1 faulty	Normal	
141	2018-09-18 11:12:00.135	PATRAN	207	BCU	Yph Trip coil-1 faulty	Normal	
142	2018-09-18 11:12:00.166	PATRAN	2BB1	REB1	DC-1 Supply fail	Normal	
143	2018-09-18 11:12:00.187	PATRAN	404	BCU	DC 1/2 supply fail	Normal	
144	2018-09-18 11:12:18.676	PATRAN	SUX	BCU	48∨ battery charger2 float on	Alarm	
145	2018-09-18 11:12:18.676	PATRAN	SUX	BCU	220V battery charger1 float on	Alarm	
146	2018-09-18 11:12:18.676	PATRAN	SUX	BCU	220V battery charger2 float on	Alarm	
147	2018-09-18 11:12:00.140	PATRAN	202	BCU	Bph Trip coil-1 faulty	Normal	
148	2018-09-18 11:12:00.154	PATRAN	208	BCU	Yph Trip coil-1 faulty	Normal	
149	2018-09-18 11:12:00.135	PATRAN	204	BCU	Yph Trip coil-1 faulty	Normal	
150	2018-09-18 11:12:00.084	PATRAN	201	BCU	Yph Trip coil-1 faulty	Normal	
151	2018-09-18 11:12:00.084	PATRAN	201	BCU	Bph Trip coil-1 faulty	Normal	
152	2018-09-18 11:12:00.081	PATRAN	207	BCU	Bph Trip coil-1 faulty	Normal	
153	2018-09-18 11:12:00.125	PATRAN	204	BCU	Rph Trip coil-1 faulty	Normal	
154	2018-09-18 11:12:18.688	PATRAN	401	BCU	Drive remote control	Alarm	
155	2018-09-18 11:12:18.688	PATRAN	203	BCU	CB Spring charged	Alarm	
156	2018-09-18 11:12:18.688	PATRAN	203	BCU	LCC AC MCB trip	Alarm	
157	2018-09-18 11:12:18.688	PATRAN	208	BCU	LCC AC MCB trip	Alarm	
158	2018-09-18 11:12:18.689	PATRAN	405	BCU	Drive remote control	Alarm	
159	2018-09-18 11:12:18.691	PATRAN	202	BCU	CB Spring charged	Alarm	
160	2018-09-18 11:12:18.691	PATRAN	202	BCU	LCC AC MCB trip	Alarm	
161	2018-09-18 11:12:00.188	PATRAN	208	BCU	Rph Trip coil-1 faulty	Normal	
162	2018-09-18 11:12:00.169	PATRAN	208	BCU	Bph Trip coil-1 faulty	Normal	
163	2018-09-18 11:12:18.691	PATRAN	408	BCU	Drive remote control	Alarm	
164	2018-09-18 11:12:18.692	PATRAN	402	BCU	Drive remote control	Alarm	
165	2018-09-18 11:12:18.692	PATRAN	204	BCU	CB Spring charged	Alarm	
166	2018-09-18 11:12:18.693	PATRAN	409	BCU	Drive remote control	Alarm	
167	2018-09-18 11:12:00.085	PATRAN	206	BCU	Bph Trip coil-1 faulty	Normal	
168	2018-09-18 11:12:00.077	PATRAN	202	BCU	Yph Trip coil-1 faulty	Normal	
169	2018-09-18 11:12:00.085	PATRAN	206	BCU	Yph Trip coil-1 faulty	Normal	
170	2018-09-18 11:12:18.681	PATRAN	404	BCU	CB not ready	Normal	

11. As per POWERGRID details:

• Tripping time:

- 400 kV Kaithal Patran I & II : 18.09.2018 at 1111 Hrs
- 400 kV Patiala Patran I & II : 18.09.2018 at 1111 Hrs

• Restoration:

- 400 kV Kaithal Patran I: 1200 Hrs, 18.09.2018
- 400 kV Kaithal Patran II: 1208 Hrs, 18.09.2018
- 400 kV Patiala Patran I: 12:25 Hrs, 18.09.2018
- 400 kV Patiala Patran II: 1226 Hrs, 18.09.2018
- 12. As per POWERGRID report, 400 kV Kaithal Patran I & II and Patiala Patran I & II tripped due to DT received at Patiala and Kaithal End. DT received due to blackout of Patran substations.
- 13. POWERGRID & PTCL details received within 24hrs

PTCL representative informed during the meeting:

- 1. Exact reason of tripping of elements: 400 kV Patran station is GIS station. DC supply for DC source-1 was inadvertently off during maintenance work.
- 2. Failure of both DC sources simultaneously: Only DC source-1 failed and Gas Density (GD) monitor installed at 400 kV GIS have only one DC supply.
- 3. Whether DC supply failed or it was a case of DC source mixing and earth fault: *DC supply for DC source-1 was inadvertently off during maintenance work. It was a human error.*
- 4. Whether 220 kV Lines tripped or not: 220 kV lines didn't trip. At 220 kV side GD monitor have supply from two DC source with changeover scheme.
- 5. DRs needs to be sent in CFG format: Later on DR in .cfg format sent separately
- 6. Detailed report, remedial measures report needs to be submitted by PTCL.

PTCL representative further informed that SF-6 Gas Density (GD) monitor installed in 400 kV side (ABB make) of 400/220 kV Patran (GIS) station have only one DC source supply and that is also failed due to manual error. DC source supply fed to GD through Nc (Normally closed) signal and it send tripping command to all the breaker in case of opening of Nc contact or DC supply failure. Issue has been taken up with OeM for providing two DC source supply to Gas Density monitor for increased redundancy and reliability.

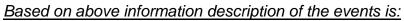
POWERGRID representative suggested that in case of failure of both DC supply to the GD, bus bar protection/tripping should not extend to the breaker. Substation should not trip in case of failure of both DC supply to the GD. In GIS, all of the sudden pressure will not go down upto lockout level, first it will send alarm for low gas pressure so in case of failure of both DC supply to GD, DC supervision relay send the alarm to the operator for further action and it should not trip the breakers. Scheme should be self-supervisory in nature and tripping contact should be picked up only in case of actual tripping condition. In POWERGRID, for the alarm purpose Nc (Normally closed) contact and for tripping purpose No (Normally open) contact shall be used in the scheme.

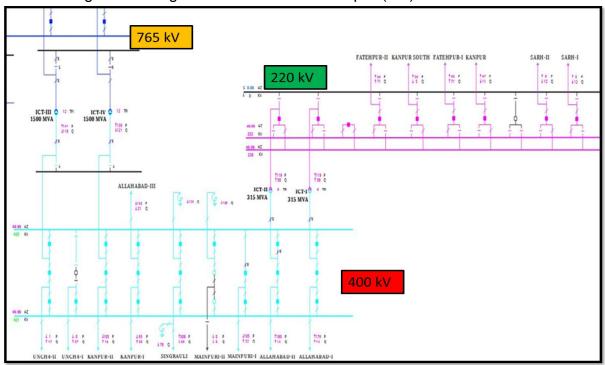
PTCL may further discuss with OeM and explore the possibility. PTCL shall share the information to NRPC/ NRLDC.

NRLDC representative also raised concern about complete outage of 400 kV station due to DC supply failure and supported the view of POWERGRID. In case of tripping on low gas pressure in GIS chamber if leakage is after the breaker than scheme shall send the tripping command to remote end of the GIS station.

D. Multiple element tripping at 400/220 kV Fatehpur (PG) at 12:17hrs of 29th Sep 2018

Event category: GD-1 Generation loss: Nil (UP may confirm) Loss of load: 220 MW (UP may confirm) Energy Loss: 0.077MU (UP may confirm)

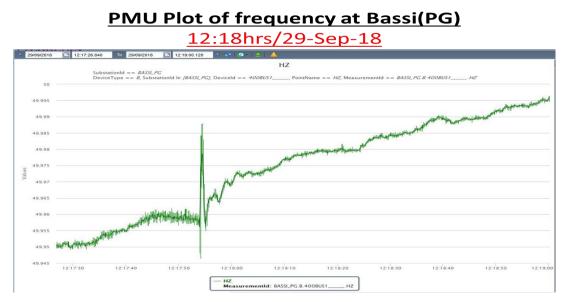

Description	Reference	Fault Info	Remarks
Fault Clearance Time	PMU data	560ms	
Phase of the fault	PMU data	Y-N fault	

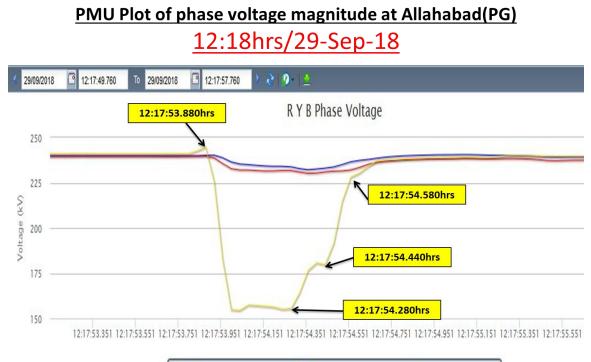

Data Summary received/available at NRLDC:

Description	Utilities	Status	Remarks
Availability of Digital Data (SCADA Data)	POWERGRID	Available	
DR/EL	POWERGRID	Not Received	
Preliminary Report	POWERGRID	Not Received	
Detailed Report	POWERGRID	Not Received	

Description Clauses Utility Remarks		Description	Clauses	Utility	Remarks
-------------------------------------	--	-------------	---------	---------	---------

Violation c Clauses	 IEGC 5.2.r & 5.9.6.c (VI) CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 43.4.A & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3, 6.4) CEA (Technical standard for connectivity to the Grid, Amendment Regulation 2013), part- II, B2 	POWERGRID	 Preliminary Report, DR/EL and detailed Report yet to be received Adequately Sectionalized and graded protective relaying system Incorrect/ mis-operation / unwanted operation of Protection system
------------------------	---	-----------	--

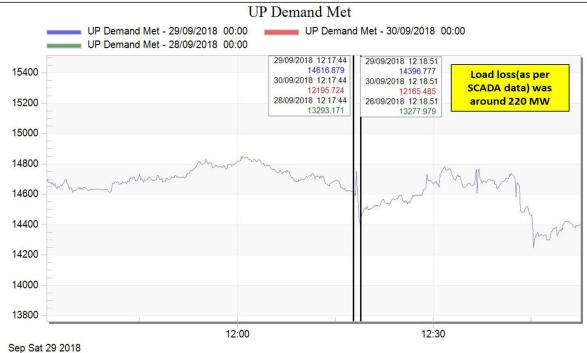




1. Single Line Diagram of 400/220 kV Fatehpur (PG):

- 400 kV Fatehpur (PG) is connected with Allahabad (PG) triple ckt, Kanpur D/C, Unchahar D/C, Mainpuri PG D/C and Singrauli S/C. It also has two 315MVA 400/220 kV & two 1500MVA 765/400 kV ICT. It has one and half breaker scheme at 400 kV & 765 kV voltage level.
- 3. It seems there was fault in 220 kV downward network at 400/220 kV Fatehpur (PG)

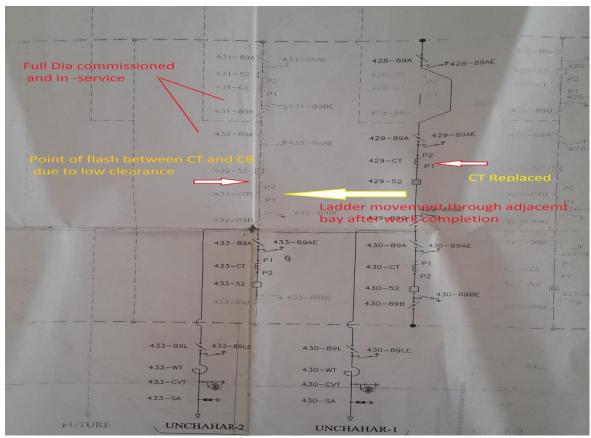
- 4. 315 MVA ICT 1 & ICT 2 at 765kV/400/220kV Fatehpur(PG) tripped due to operation of directional earth fault.
- 5. At the same time other 400kV lines and 1500 MVA ICT 3 & ICT 4 also tripped.
- 6. In antecedent conditions, 1500 MVA ICT 3 & ICT 4 carrying 141 MW & 139 MW respectively.
- 7. Name of the tripped elements are as below:
 - 400 kV Allahabad(PG)-Fatehpur(PG) ckt-1
 - 400 kV Allahabad(PG)-Fatehpur(PG) ckt-2
 - 400 kV Allahabad(PG)-Fatehpur(PG) ckt-3
 - 400 kV Fatehpur(PG)-Mainpuri(PG) ckt-1
 - 400 kV Fatehpur(PG)-Singrauli(PG)
 - 315 MVA ICT 1 & ICT 2 at 765kV/400kV Fatehpur(PG)
 - 1500 MVA ICT 3 & ICT 4 at 765kV/400kV Fatehpur(PG)
 - 220 kV Fatehpur(PG)-Fatehpur(UP) ckt-1
- 8. PMU plots:


- VBM	- VRM	- VYM
SubstationId: ALBAD_PG	SubstationId: ALBAD_PG	SubstationId: ALBAD_PG
DeviceId: 400BUS1	DeviceId: 400BUS1	DeviceId: 400BUS1

Time	Time Duration (in ms)	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
12:17:53:880	Oms	PMU data					Reference Time
12:17:54:016	135ms	FATEHPUR	400kV	32T4TIE	Circuit Breaker	disturbe	
12:17:54:022	140ms	FATEHPUR	400kV	32T4TIE	Circuit Breaker	Open	400kV side Tie CB of 1500MVA ICT 4 opens.
12:17:54:487	605ms	MAINPURI	400kV	9FATPR1	Circuit Breaker	Open	
12:17:54:496	615ms	FATEHPUR	400kV	21SINGR	Circuit Breaker	disturbe	
12:17:54:503	625ms	FATEHPUR	400kV	20R2SIN	Circuit Breaker	Open	Tie CB of 400kV Fatehpur(end)-Singrau & Reactor opens.
12:17:54:504	625ms	FATEHPUR	400kV	15MAINP1	Circuit Breaker	disturbe	
12:17:54:506	625ms	FATEHPUR	400kV	15MAINP1	Circuit Breaker	Open	Main CB of 400kV Fatehpur(end)- Mainpuri ckt-1 opens
12:17:54:507	625ms	FATEHPUR	400kV	14MAINP1	Circuit Breaker	Open	Tie CB of 400kV Fatehpur(end)-Mainpur ckt-1 opens
12:17:54:508	630ms	FATEHPUR	400kV	21SINGR	Circuit Breaker	Open	Main CB of 400kV Fatehpur(end)- Singrauli opens.
12:17:54:510	630ms	FATEHPUR	400kV	11T2AL2	Circuit Breaker	disturbe	
12:17:54:513	635ms	FATEHPUR	400kV	8T1AL1	Circuit Breaker	Open	Tie CB of 315 MVA ICT 1 & 400kV Fatehpur(end)-Allahabad ckt-1 opens.
12:17:54:513	635ms	FATEHPUR	400kV	8T1AL1	Circuit Breaker	disturbe	
12:17:54:513	635ms	FATEHPUR	400kV	9ALBAD1	Circuit Breaker	disturbe	
12:17:54:515	635ms	FATEHPUR	400kV	9ALBAD1	Circuit Breaker	Open	Main CB of 400kV Fatehpur(end)- Allahabad ckt-1 opens.

9. As per SCADA data:

Time	Time Time Duration S/S Nam (in ms)		Voltage Level (in kV)	Element Name	Element Type	Status	Remarks		
12:17:54:520	640ms	FATEHPUR	400kV	11T2AL2	Circuit Breaker	Open	Tie CB of 315 MVA ICT 2 & 400kV Fatehpur(end)- Allahabad ckt-2 opens.		
12:17:54:574	695ms	MAINPURI	400kV	8T1FA1	Circuit Breaker	Open			
12:17:54:588	710ms	710ms FATEHPUR 765kV 5T4GA2 Circuit Breaker		Circuit Breaker	Open	765kV side Tie CB of 1500MVA ICT 4 opens.			
12:17:54:611	730ms	FATEHPUR	400kV	25T3	Circuit Breaker	disturbe			
12:17:54:615	735ms	FATEHPUR	765kV	3Т3	Circuit Breaker	disturbe			
12:17:54:624	745ms	FATEHPUR	400kV	26T3KA2	Circuit Breaker	disturbe			
12:17:54:629	750ms	FATEHPUR	765kV	ЗТЗ	Circuit Breaker	Open	765kV side Main CB of 1500MVA ICT 3 opens.		
12:17:54:631	750ms	FATEHPUR	400kV	25T3	Circuit Breaker	Open	400kV side Main CB of 1500MVA ICT 3 opens.		
12:17:54:634	755ms	FATEHPUR	400kV	26T3KA2	Circuit Breaker	Open	400kV side Tie CB of 1500MVA ICT 3 opens.		
12:17:54:760	880ms	FATEHPUR	765kV	2T3GA1	Circuit Breaker	Open	765kV side Tie CB of 1500MVA ICT 3 opens.		
12:17:54:996	1115ms	FATEHPUR	400kV	12ALBAD2	Circuit Breaker	Open	Main CB of 400kV Fatehpur(end)-Allahabad ckt-2 opens.		
12:17:55:469	1590ms	FATEHPUR	220kV	9KANPS	Circuit Breaker	Open			


UP Demand pattern during tripping

- 10. As per PMU & SCADA data:
 - As per PMU, maximum dip in Y-phase.
 - Fault Clearance time: **520ms**
 - SoE captured, it seems all the 400kV elements tripped with some time interval.
 - 765/400 kV ICT tripped after fault clearance
- 11. Preliminary Report, DR/EL and detailed report is still awaited from POWERGRID.

POWERGRID representative informed during the meeting:

1. Exact location of fault and nature of fault: The work of replacement of CTs was being carried out in 400 kV Unchahar-1 – Future Tie bay, which is adjacent to 400KV Unchahar-2 – ICT-2 Tie bay in which fault has occurred. Erection of CTs was completed and manpower and T&P was being removed from the site. An Extendable Aluminium Ladder was used during erection of CTs and the same was also being shifted to one side by hired Maintenance Assistance Fitter. The Fitter was instructed to pull the ladder from Gravelled area to Road. However, as informed by Fitter, he misunderstood the instruction and thought that he has to shift the Ladder outside the Switchyard and started moving the Ladder towards 400KV Unchahar-2 – ICT-2 Tie bay and reached near to middle phase before anybody from POWERGRID could react.

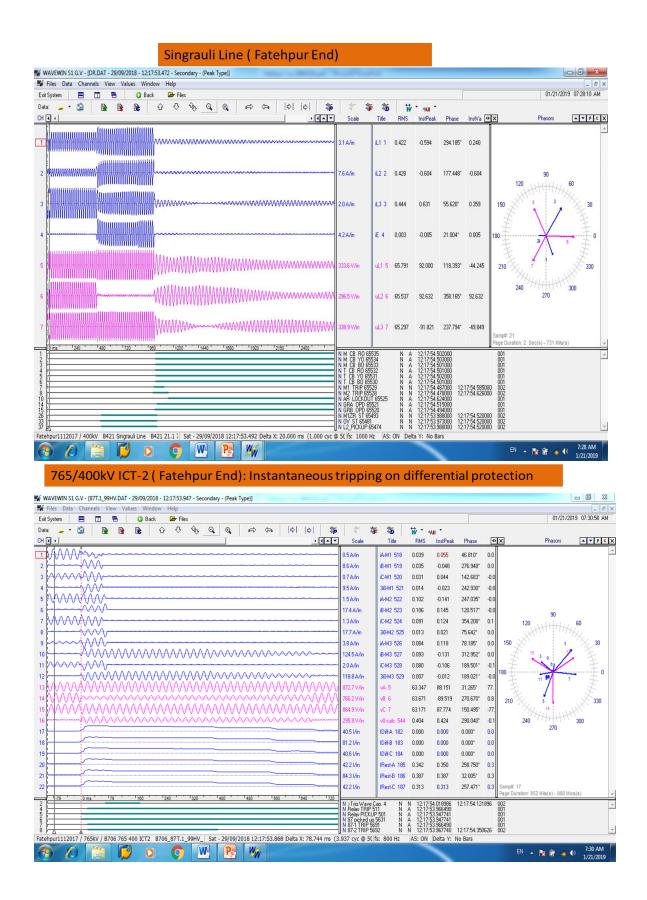
Location of fault given at picture-1 and physical measurement of incident occurred depicted at picture-2

- 2. Sequence of tripping needs to be reported and explained.
- 3. Reason of delayed clearance of fault: As it is seen from the picture-1 that the fault was occurred in the vicinity of the charged Y phase of above 400KV Unchahar-2 – ICT-2 Tie bay, therefore the ICT-2 tripped on Teed Differential. However, the Unchahar Line not tripped as no fault current fed from Unchahar Substation because the line was charged in radial mode. Main CB of Unchahar-2 Line not tripped on Reverse Zone since no fault current fed from line. Therefore, the fault current sustained till isolation of fault approximately for 500ms. However, the LBB of Tie CB must have operated to trip the Main CB of Unchahar-2 to isolate the faulty section.
- 4. Reason of multiple elements tripping at Fatehpur (PG): As LBB protection was not operated for tie CB, all the elements tripped in reverse zone/Z-2 except 765/400 kV ICT-1 at Fatehpur (PG).
- 5. Reason of tripping of 765/400 kV ICTs at Fatehpur (PG). ICTs tripped after fault clearance: 765/400 kV ICT-2 tripped on instantaneous

differential protection. 765/400 kV ICT-1 at Fatehpur (PG) tripped on back up over current earth fault protection

- 6. Protection co-ordination for 400/220 kV ICTs and 400 kV transmission elements: *Protection co-ordination is checked and found ok.*
- 7. Protection co-ordination of 765/400 kV ICTs at Fatehpur (PG): *Protection co-ordination is checked and found ok.*
- 8. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by POWERGRID: *Extract of DR/EL is as below-*

Allahabad -1 Line (Fatehpur Er	ю,						- 0 - X
🕷 Files Data Channels View Values Window Help							- 5 :
ExitSystem 🚍 🔟 🖻 🥥 Back 📨 Files Data: 🚄 🕶 🖄 🐚 🍖 🍖 🗘 🖓 🆓 🧐 🥥 💭 🚓 🏟 🏟 🎲	- X6						01/21/2019 07:16:17 AM
	Scale	Title	RMS	InstPeak	Phase	ø	Phasors PC
	4264.1 A/in	a.1 1	682.180	1046.016	53.437*	599.	
2	12574.9 A/in	iL2 2	2129.559	-3382.272	236.388*	-188	
	2625.2 A/in	iL3 3	384.473	622.080	71.958*	170.	90 120 150 3 7 3 7 3 7
	1.20071E6 V/in	uL1 5	264888.730	-367857.389	256.482*	-879	180
5 MMMMMMMMM	1.0625E6 V/in	ul.2 6	20377.092	28404.916	45.595°	1773	210 240 330 240 270 300
	1.20795E6 V/in	uL3 7	257249.464	364666.982	358.481*	3646	
z	6106.1 A/in	iEp 64	1082.597	1755.648	52.879*	1110	Samp#: 509
	N M CB R0 55 N M CB Y0 55 N M CB 80 65 N T CB R0 65 N T CB R0 65 N T CB R0 65 N M T CB R0 65 N AR LOCKOU N GRA OPD 65 N M CRB OPD 65 N M 12 R ST 65	129 128 15525 1521 1520 495 5476		17:54:511000 17:54:512000 17:54:512000 17:54:512000 17:54:513000 17:54:513000 17:54:513000 17:54:48000 17:54:48000 17:54:498000 17:53:982000 17:53:982000 17:53:982000	12:17:54.51 12:17:54.61 12:17:54.51 12:17:54.51	86000 38000	Page Duration: 1 Sec(s) - 459 Mila(s) 001 001 001 001 001 001 001 001 001 00
tehpur1112017 / 400k/ B409 Alahabad Ine-2 B409 21.1409. Sat - 29/09/2018 12:17:53.980 (Deta X: 508.000 ms (25.400 cyc	© 5(fs: 1000 I	Hz AS:	ON Delta Y	No Bars		EN	▲ 1/21/2019


and the second second second second second	1000	
Allahabad -1	Line	Fatehpur End)

AVEWIN S1 G.V - [DR.DAT - 29/09/2018 - 12:17:53.723 - Secondary - (Peak Type)] iiles Data Channels View Values Window Help							
System 🚍 🗂 🔁 🥥 Back 🗁 Files							01/21/2019 07:20:37 AM
: ▶ • ③ ▶ ▶ ▶ ▶ ↓ ☆ ☆ ☆ @ @ ↔ ↔ ↓↓ ↓ ↓ ↓ ↓ • • • • • • • • • • • • • •	Scale	Title	AAII RMS	InstPeak	Phase	<u>ex</u>	Phasors
······································	4.3 A/in	iL1 1	0.237	0.332	119.635°	-0.	
······································	12.8 A/in	iL2 2	0.277	0.387	354.708*	0.	90
·······	2.7 A/in	iL3 3	0.241	-0.341	227.802*	-0. 150 X	₩₩₩₩₩₩₩₩ • 30
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		uL1 5	65.413	-91.255	297.617*	42 180	
WWWW		uL2 6	65.738	-92.840	177.273°	.9 210	4444444 300
WWWWWWWWWWWWWWWWWWWWW	~ 335.2 V∕in	uL3 7	65.155	91.840	57.028°	50	270
+	6.2 A/in	iEp 4	0.005	0.009	338.782*	0. Samp#: 21	Sec(s) - 497 Mils(s)
	Image: Construction of the second s	529 528 JT 65525 5521 5520 5493 88	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1217:54 1217:54 1217:55 1217:55 1217:55 1217:54 1217:54 1217:53 1217:53	510000 513000 188000 12: 188000 12: 198000 521000 502000	001 001 001 001 001 001 001 001 001 001	

Allahabad -3 Line (Allahal	bad End	d)					
WAVEWIN S1 G.V - [Saturday 29 September 2018 12:17:53.000.DAT - 29/09/2018 - 12:17:53.966 - Secondary - (Peak Type)] W Files Data Channels View Values Window Help Exk System Exk System Ext System Ext System Files							- # × 01/21/2019 07:22:25 AM
Dax - · 3		F X	6 ₩ RMS	* 14II InstPeak	Phase	•	× Phasors • • • • • • • • •
	2.19593E6 V/in	VA	242460.388	-339824.000	275.957*	355	<u>^</u>
2 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	- 2.01103E6 V/in	VB	238718.124	336337.000	155.856*	-306	
• • • • • • • • • • • • • • • • • • •	1.87524E6 V/in	VC	241053.904	340648.200	35.603*	277	90 120 150
· • • • • • • • • • • • • • • • • • • •	1.95762E6 V/in	VN	5126.685	-8971.100	316.357*	649	I . I
- WWWWWWWWWWWWWWWW	1782.9 A/in	ы	244.616	-342.488	296.234°	157.	
	12096.4 A/in	IB	230.413	-325.916	180.023*	-325	210 330
, MAAAAAAAAAAAAAAAAAAAA	- 1161.2 A/in	ю	249.313	348.012	61.534°	168.	270
*	10295.2 A/in	IN	9.683	11.048	175.703*		Samp#: 25 Page Duration: 1 Sec(s) - 138 Mils(s) - 410 Mics(s) 👻
	N MAIN CB Rot N MAIN CB Yot N MAIN CB Bot N TBC Roh OP N TBC Yoh OP N TBC Boh OP N Any Trip N Any Trip N T2		444447NZ NNNNNNN	12:17:54.396076 12:17:54.361048 12:17:54.361748 12:17:54.367712 12:17:54.367720 12:17:54.356044 12:17:54.295996 12:17:53.965732 12:17:53.965732	12:17:54. 12:17:54. 12:17:54. 12:17:54.		001 A 100 A
13 F⊥ PGCIL ALLAHABAD Sat - 29/09/2018 12:17:53.487 [Deita X: 478.716 ms (23.936 cyc @ 5/lfs: 1199.041 Hz]AS Image: Comparison of the system of the sy	N 22 N 23 ON Delta Y: N	o Bars	N N	1217:53.965732	12:17:54.	334360	EN A 🕅 🔐 📣 🕕 7:22 AM 1/21/2019

Mainpuri-1 Line (Fatehpur End)

it System		els View		Back	Help 🗁 Files													[01/2	- ¢
eta: 🍃	- 🗐	b [s 1	Ŷ	Ŷ	ŵ, () @	. .	¢	ŝ	\$	⇔	্ষ ব্যান্থ	∜‴ Scale	🌾 🎁 Title	RMS	* 1411 * InstPeak	Phase	InstV 🖸	Phasors	▲ ▼P
10000		u na popula												1.3 A/in	iL1 1	0.134	0.194	135.387*	-0.124		
		~												10.8 A/in	iL2 2	0.156	0.226	20.280*	0.198	90 120 44444	60
		an a		###										2.0 A/in	iL3 3	0.146	-0.212	257.120°	-0.051	150	1 7 × ¥ 30
					₩₩	₩₩	WW	WW	₩₩	www	AMAA	₩₩	www	343.6 V/in	uL1 5	65.644	91.934	119.052*	-45.113	180 7	• -
		 		#A	WWW	www	ww	MMM	ww	www.	AMAAA	~~~~	~~~~	308.8 V/in	uL2 6	65.983	93.255	358.632*	93.255	210	
		(),),),),),),),),),) (),),,,,,,,,,,,,,,				₩₩	₩₩₩	₩₩₩	WW	₩₩₩	₩₩₩	MMA	*****	360.6 V/in	uL3 7	65.682	-92.293	238.486°	-49.179	240 777777777777777777777777777777777777	300
	111 11	TANG TI Tanggan					#		<u> </u>	11	11	I T T		0.0 A/in	iEp 64	0.005	·0.005	201.251*	-0.005	Samp#: 21 Page Duration: 2 Sec(s) - 731	Mils(s)
0 ms	1240	480	720	1980	1200	1440		680 '	1920	21	80 '	2400		N M CB R0 N M CB 20 N M CB 80 N T CB R0 N T CB 80 N T CB 80 N M1 TRIP1 N M2 TRIP1 N M2 TRIP1 N M2 TRIP1 N M2 R0 N M3 N M2 R0 N M3 N M2 N M3 N M3 N M3 N M3 N M3 N M3 N M3 N M3	65532 65531 65530 65529 5528 0UT 65525 65524 65521		1217:54,5 1217:54,5 1217:54,5 1217:54,5 1217:54,5 1217:54,5 1217:54,4 1217:54,4 1217:54,8 1217:54,8 1217:54,8 1217:54,5 1217:54,5	06000 08000 07000 97000 12: 31000 12: 53000 97000 12: 16000 12:	17:54.58700 17:54.62900 17:54.57000	001 001 001 001 001 001 001 001 002 002	
		kV B415 M			•••		29/09/2							N M1ZR ST N OV ST 65 N L2_PICKU	65493 488 P 65476	N N N N N N	12:17:53.9 12:17:53.9	87000 12: 73000 12: 87000 12:	17:54.52700 17:54.68700 17:54.52700	0 002 0 006 0 002	

Files Data Channels View Values Window Help							- 8
ak System ☴ 100 唔 ② Back 🖙 Files sta: 🖕 ד 🗐 ┣┳ ┣┳ ┣┳ ┣┲ ☆ - ♡ - ♡φ, Ϙμ Ϙμ Φ ↓↓ ↓	alle role alle	r slir	↔ -				01/21/2019 07:32:11 AM
	%)≨ ∜‴ %) ▲▼	F XD Title	RMS	1AII InstPeak	Phase	Ins 😶	X Phasors A V P C
	1.6 A/in	iA 1	0.068	-0.095	254.779*	-0.030	
	12.8 A/in	iB 2	0.077	0.107	128.766*	-0.070	
MANAMAN MANAMANA MANAMANA MANAMANA MANAMANA	0.9 A/in	ю з	0.068	0.090	5.447*	0.090	90
<i>^</i> ********************************	12.8 A/in	N 4	0.007	-0.013	195.660°	0.000	
	426.5 V/in	vA 5	63.578	88.750	28.623°	79.350	150 30
	375.2 V/in	vB 6	64.018	-90.250	268.161°	-2.900	
awwww.www.www.www.www.www.www.www.www.w	419.5 V/in	vC 7	63.560	89.550	148.146*	-76.05	210 330
	231.3 V/in	vGnd 8	0.454	-0.780	177.657*	0.231	240 44444 300
	652.2 V/in	vA8 105	110.764	155.950	58.508*	82.250	270
	646.5 V/in	vBC 106	110.483	-154.700	298.035*	73.150	
	645.4 V/in	vCA 107	109.842	-155.400	178.386*	-155.4	Samp#:21 Page Duration:1 Sec(s)-91 Mils(s)-907 Mics(s)
11240 1-120 0 ms 120 1240 200 1460 1600 1720 -	N 67N-TOC TR	IP 2686	N N	12:17:54.570	0147 12:17	:54.71300	
	N 67N-TOC TRI N 67/67N picke N 67/67N TRIP N Relav PICKUI	edup 2691 2696		12 17:54 570 12 17:53 968 12 17:54 570 12 17:53 968	3749 12:17 0147 12:17	54.71300 54.66804 54.71300 54.66804	4 002 9 002 4 002 9 002 4 002
hour1112017 / 765KV / 8703 765 400 ICT1 8703_67.2HV Sat - 29/09/2018 12:17:53.737 /Delta X: 230.769 ms	IN Relay TRIP 5	01	NN	12:17:54.570	J147 12:17	254.666004	4 002

765/400kV ICT-1 (Fatehpur End): Tripped on back up earth fault protection

es D	ata C	hannels	View	Value	s Win	dow	Help																			
kit Syst		8		8	-	Back		Files												111					01/21/201	9 08:06:04
ata:	- 1	3		3			· ن	3	\$~ Q	•		₽	Å	\$	\$		\$	20	筆 猫	1	V TAIL T					
		ber 2018	12.18.1	1.000.dat	t - 09/29	9/18 - 1	2:18:11.7	50 - I	Primary - (P	eak Type)												-			
CH 🖣	•							t.				П.,					• •		Scale	Title	RMS	InstPeak	Phas		Phasors	▲ ▼ P (
1	WAA	₩₩	AAAA	₩₩	WW	₩₩	AAAA	AA	AAAAA	₩₩	₩	₩₩	₩₩	HAAA	AAAA	₩	WWA	AAA	1.91517E6 V/in	VA	228395.425	319405.572	28.347*			
2 1	AAAI	AAAA	AAAA			AAAI	AAAA	KAA	ΔΑΛΑΑΑ	٨٨٨٨	٨٨٨	ana.				-			2.09847E6 V/in	VB	164746.491	-236914.922	266.822			
-	IVVV	VVVV	VVVV		VVV	1444	VVVVV	1				1004							2.030472.0 9781	YD	104/40.431	-230314.322	200.022	120	90	60
3 ¥	₩	₩₩	₩₩	AMA	₩	WW	₩₩	Ŵ	₩₩₩	₩₩	₩₩	MA	₩₩	₩₩	₩₩	₩₩	₩₩	₩₩	1.96774E6 V/in	VC	230936.302	324478.018	149.787	150 XHHH	THAN A	XX 30
4								1	MAAAA	www	~~~	in	AAAA	AAAA	AAAA	MAA	AAAA	AAA	2.01284E6 V/in	VN	60267.267	86612.012	95.779°	130 the vo	VA	Ŧ
								٨.					VVVV	VVVV		444		111			00201.201	00012.012	00.110	180	×	Ŧ.
5 ∛	₩₩	WWW	WW	WW	AWA	ww	WW	M	AMAMA	www	M	MA							2145.5 A/in	IA	145.101	-204.405	328.993	· E	AIC	Ŧ
-								i al	LAAAAAA	AAAA	\AAA	AAA							26372.8 A/in	IB	3270.531	-4568.729	188.408	210		× 330
								10	******	*****	000	V V												240	Hitter	300
A	ww	WW	AAAA	AAAA	ww	ww	AAAA	٩W	AWW	WW	WW.	Wh	[2663.8 A/in	IC	308.571	-436.432	328.507	•	270	
								άđ	LAAAAAA	AAAA	IAAA	AAA							22515.7 A/in	IN	2918.278	-4049.430	194.828			
_	1,680	, .	-420	-2		-14		VV t0 m	*****		280	111	420		580		700 '							Samp#: 1901 Page Duration: 1 Se	ec(s) - 457 N	lils(s) - 500 M
Ē			420	-20	24				s //	×	200		420				100		A RL1 86 R TRI A RL2 86 Y TRI A RL3 86 B TRI	IP P	N N N N	12:18:12:109001 12:18:12:109001 12:18:12:109001 12:18:12:109001 12:18:12:109001 12:18:11:760001	12:18: 12:18:	2.189001 002 2.189001 002 2.189001 002 2.189001 002		
E								ł											A RL4 3 AR BLU	JUK	N N N N	12:18:12:109001 12:18:12:109001 12:18:11:760001	1218.1	2145501 002		
E								t											A Z2 A T2 A Z3 N M2 CARRIER N L8 MAIN A/R N L9 MAIN R PH		N N N N	12:18:11.783501 12:18:12.109001 12:18:12.109001 12:18:12.129001 12:18:12.129001 12:18:12.149001 12:18:12.149001 12:18:12.149001	12:18: 12:18:	2.145501 002 2.145501 002 2.147001 002 2.145501 002 2.205501 002		
E								E					-						A 23 N M2 CARRIER N L8 MAIN A/R	RECEN	/ N N / N N	12:18:12:12:001 12:18:12:12:001 12:18:12:12:001	12:18:	12.145501 002 12.205501 002 001		
								t			_		_								NA	121812147001		001		
								ł				1						_	N L11MAIN B PI N L12 TIE R PH N L13 TIE Y PH	I OPN	N A N A N A	12:18:12:149001 12:18:12:154001 12:18:12:147001		001		
1-								6			_	1				_	_	_	N L14 TIE B PH	OPN	ŇÂ	12:18:12:147001		001		

	Kanpur-1 (Kanpur End)				
🕷 WAVEWIN S1 G.V	Sale Caller & Sole	and the second			
Files Data Channels View Values Window Help					
Exit System 🚍 🔟 🖶 🥥 Back 🕻 Data: 🎍 🗣 🏠 🏠	≱Files -⊽ %, Q, Q, ⇔ ⇔ İ¢i İ¢i %pi ∦pi	¥F ¥6	W T ANI T		01/21/2019 08:08:04 AM
		AF 40	W ' AAH '		
W Saturday 29 September 2018 12:17.53.000.DAT - 29/09/2 CH	118 - 12:17:53.953 - Secondary - (Peak Type)	Scale Titl	e RMS	InstPeak	Phas OX Phasors Y P C X
		1.61949E6 V/in VA		323149.800	73.721*
2	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	1.43487E6 V/in VB	167512.103	-236989.200	312.179' 90
3 WWWWWWWWWWWWW		1.56814E6 V/in VC	230328.496	-325559.000	194.060° 120 460 150 và 30
4		1.89541E6 V/in VN	60921.343	86445.900	140.775'
5	·····	11898.7 A/in IA	168.629	232.008	33.338* VC VS 330
6	<u>*</u> ////////////////////////////////	21830.8 A/in IB	2892.168	-4040.806	234.331* 240 270 300
7		9678.0 A/in IC	325.546	461.254	22.904*
8	<u>i</u> wwww.www.iw	17721.0 A/in IN	2467.637	-3455.262	239.630" Samp#: 1117 Page Duration: 1 Sec(s) - 215 Mils(s) - 138 Mi
1	-110 ' 0 ms ' 110 ' 1220 ' 330 ' 1440 ' 550 ' 1	A Relav Label 01 A Relav Label 02 A Relav Label 03 A Relav Label 03 A Relav Label 04 A T1 A Z2	N N 12:17: N N 12:17: N N 12:17:		21754 39108 002 A 1755
8 9 18 19 20 27 27		A 11 A 22 A 72 A 23 N Roh Open M N Yoh Open M N Boh Open M 04 N M/T A/R optd N A/R L/O 11	N N 1217 N A 1217	53.966476 12	2/23417/6 002 21755 430108 002 21755 45688 002 21755 45690 002 21755 450306 002 21755 450306 002 21755 533400 002 001
PGCIL KNPUR Sat - 29/09/2018 12:17	54.301 Delta X: 348.612 ms (17.431 cyc @ 5(fs: 1199.041 Hz AS: ON Delta Y				
🚱 🖉 📋 🚺 💽	🔿 🖳 💽 🗯				EN 🔺 🍞 🔐 🌒 🕺 8:08 AM 1/21/2019

Multiple Element Tripping at POWERGRID Fatehpur Substation on 29.09.2018

Brief History of Events:

On Date 29.09.2018, 12:17 hrs. Following Lines and ICTs tripped at Fatehpur 765/400/220KV Substation:

Tripped from Fatehpur (PG) End:

400KV Fatehpur – Allahabad – 1 400KV Fatehpur – Allahabad – 2 400KV Fatehpur – Mainpuri – 1 400KV Fatehpur-Singrauli 765/400KV ICT-1 765/400KV ICT-2 **Tripped from Remote Ends Only:** 400KV Fatehpur – Allahabad – 3 400KV Fatehpur – Kanpur – 1 400KV Fatehpur – Kanpur – 2 **Element Out of Service in Precedent Condition:** 400KV Fatehpur – Mainpuri – 2 on Over-Voltage Regulation Action Taken by POWERGRID:

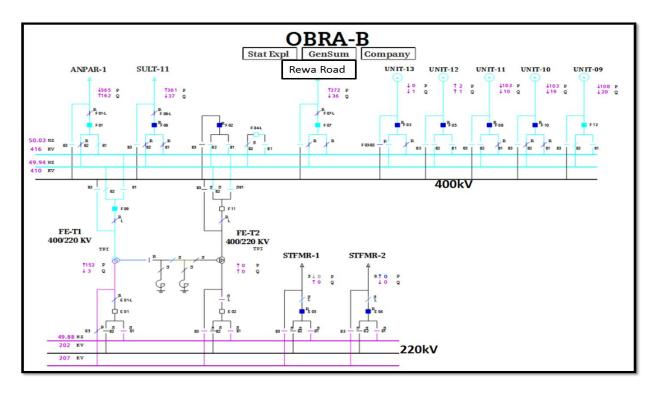
- It was evident from DRs of the above trippings that the relays have functioned as per scheme and settings except LBB of the Tie CB.
- LBB relay (SIPROTECH- 7SS252) of 400KV Unchahar-2 ICT-2 Tie was later found to be faulty when tested and same was replaced.

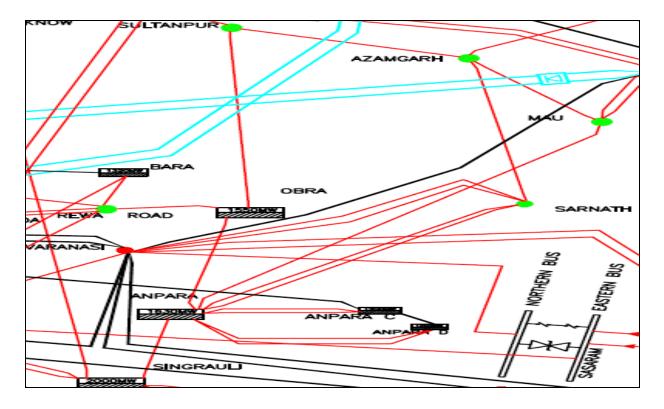
E. Multiple Element tripping at 400/220kV Obra-B TPS at 04:37hrs of 14th Oct 2018

Event category: GD-1 Generation loss: 400MW (As per UP report) Loss of load: 160MW (As per UP report) Energy Loss: 0.22 MU

Data Summary received/available at NRLDC:

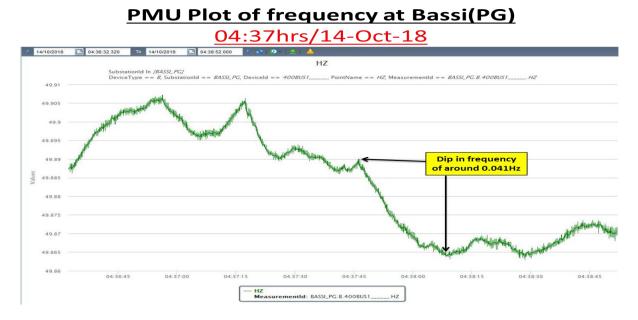
Description	Reference	Fault Info	Remarks
Fault Clearance Time	PMU data	No fault	
Phase of the fault	PMU data	NA	

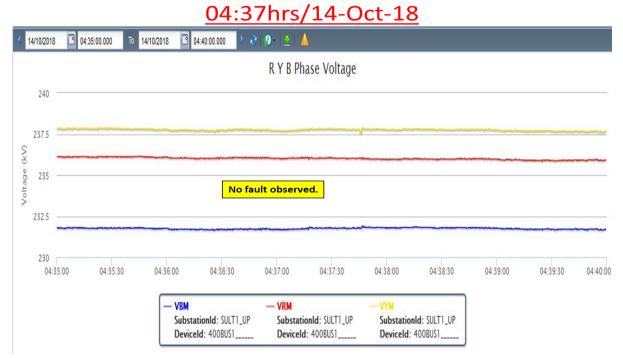

Description	Utilities	Status	Remarks
Availability of Digital Data (SCADA Data)	Uttar Pradesh	Available	
DR/EL	Uttar Pradesh	Not Received	
Preliminary Report	Uttar Pradesh	Received	Within 24hrs
Detailed Report	Uttar Pradesh	Not Received	


Description Clauses	Utility	Remarks
---------------------	---------	---------

Violation of Clauses	 IEGC 5.2.r & 5.9.6.c (VI) CEA Grid Standard 15.3 CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 43.4.A & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3, 6.4) CEA (Technical standard for connectivity to the Grid, Amendment Regulation 2013), part-II, B2 	Uttar Pradesh	 Detailed Report yet to be received DR/EL yet to be received Adequately Sectionalized and graded protective relaying system Incorrect/ mis-operation / unwanted operation of Protection system
-------------------------	---	------------------	--

Based on above information description of the events is:

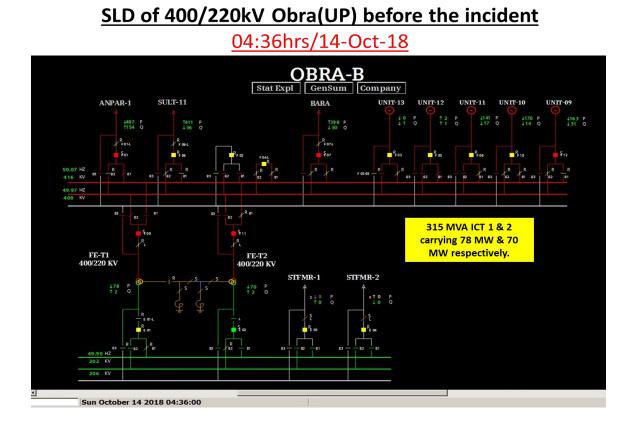

1. Single Line Diagram of Obra-B TPS:



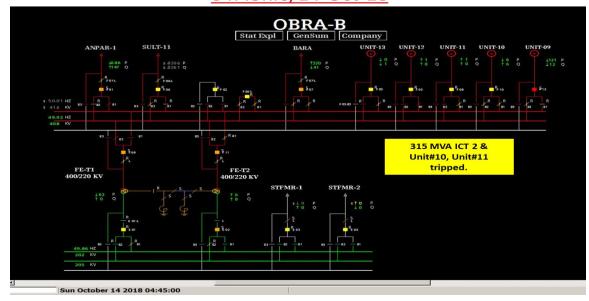
- 400 kV Obra-B TPS is connected with Anpara TPS S/C, Rewa Road S/C and Sultanpur S/C. It also has five units of 200MW and two 400/220kV 240MVA ICTs. It has DMT (double main transfer breaker) bus bar scheme.
- 3. At 04:37hrs of 14th Oct 2018, 220/6.6 kV 30MVA station Transformer-I&II tripped on fault due to fire in cable gallery. It further resulted into running unit number 9,10,11 & 12 each of 200MW.
- 4. Fault was not captured in PMU at the time of multiple element tripping.
- 5. 400/220 kV 315MVA ICT-I&II, 400 kV Obra-Sultanpur & 400 kV Obra-Rewa Road ckt also tripped at the same time.
- 6. 400 kV Obra-Anpara ckt also manually opened at 04:43hrs.
- 7. Name of the tripped elements are as below:
 - 400 kV Obra-B(UP)-Rewa road(UP)
 - 400 kV Obra-B(UP)-Sultanpur(UP)
 - 315 MVA ICT-1 at 400/220kV Obra-B(UP)
 - 315 MVA ICT-2 at 400/220kV Obra-B(UP)
 - Unit -9 (200 MW) at 400/220kV Obra-B(UP)
 - Unit -10 (200 MW) at 400/220kV Obra-B(UP)
 - Unit -11 (200 MW) at 400/220kV Obra-B(UP)
 - 220 kV/ 6.6 kV, 30 MVA Station transformer at 400/220kV Obra-B(UP)

- 8. In antecedent condition:
 - 400/220 kV 240MVA ICT-2 of Obra-B TPS was already under outage
 - 220/132 kV 100MVA ICT-3 at Obra A TPS was already under outage
- 9. PMU plots:

PMU Plot of phase voltage magnitude at Sultanpur(UP)


PMU Plot of phase voltage magnitude at Obra B TPS (UP) 04:37hrs/14-Oct-18

Complex Report [PMU_Data_KV [14/10 04:36	-14/10 MAI[]
Navigation and Report Settings	Requercy DFDT Mil Milar R.Y.B.Volkages R.J.B.Currets Postiveleq Volkage 单
👌 Reset Filters	R/J/Biologes
Fiters 🗧	R Y B Phase Voltage Magnitude
Report Filters	E Data RY8Phase Voltage X
Period:	/ willows To willows To willows To willows To willows To 9 5 5 1 2 10 12 12 10
14/10/2018 OH:36:00.000 To 14/10/2018 OH:41:00.000	R Y B Phase Voltage No fault observed.
Pivot Periods to Columns:	119 What was a second with a second s
SubstationId:	
OBRAA_UP	
DeviceType:	> 1185
abc (100 character max)	human
DeviceId:	118.25 0437.05 0437.05 0437.15 0437.15 0437.25 0437.25 0437.30 0437.35 0437.40 0437.45 0437.55 0438.00 0438.05 0438.05 0438.15 0438.20 0438.25 0438.30 0438.35 0438.45
abc (100 character max)	
	VRM VRM VRM SubstationId: 08RAA, UP DeviceId: 4008US1 DeviceId: 4008US1 DeviceId: 4008US1
	R Y B Phase Voltages Angles


PMU Plot of phase voltage magnitude at Obra B TPS (UP) 04:43hrs/14-Oct-18

Complex Report [PMU_Data_KV [14/10 04:36	• 14/10 0441]]
Navigation and Report Settings	Requery DFDT Mil Miz R.Y.S.Wohaps R.Y.S.Curets Postiveleg/Iologe 🖄
neset Filters 🗧	N/j Mages Howe S- How
Fiters 🖪	R Y B Phase Voltage Magnitude
Report Filters	E Data KY8 Place Voltage X
Period:	
14/10/2018 04:36:00.000 To 14/10/2018 14/10/2018 04:41:00.000	R Y B Phase Voltage
Pivot Periods to Columns:	119
SubstationId:	
OBRAA_UP	8 1185
DeviceType: abc (100 character max)	
DeviceId:	118 04:43:29.760 04:43:29.560 04:43:30.560 04:43:30.560 04:43:30.560 04:43:30.760 04:43:31.560 04:43:31.360 04:43:31.560 04:43:31.560 04:43:32.560 04:43:4200000000000000000000000000000000
abc (100 character max)	- YBM - YRM - YTM Substationid: OBRAA, UP Substationid: OBRAA, UP Substationid: OBRAA, UP Devicedd: 4008US1 Devicedd: 4008US1
	R Y B Phase Voltages Angles

10. As per SCADA data:

SLD of 400/220kV Obra(UP) after the incident 04:45hrs/14-Oct-18

11. As per PMU and SCADA data:

- As per PMU, no fault in the system.
- Fault Clearance time: Not Applicable

• No SoE captured

12. As per UP Report:

SI. No.	Name of element	Date & time of Normalization	Remark
l.	200MW unit no. 9	Still in Tripped condition	
2.	200MW unit no. 10	-do-	
3.	200MW unit no. 11	-do-	1
4.	200MV Unit - 12	-do-	Was under process of synchronization, unit was hand tripped due to safely reasons
5.	400/220KV 315MVA ICT I & II	Still in open condition	aspect due to sarely reasons
6.	400KV Obra - Sultanpur	-do-	
7.	400KV Obra – Rewa Road	-do-	
8.	400KV Obra – Anpara	-do-	Hand Tripped at Anpara on 14.10.2018 at 06:16

- 13. Multiple element tripping without any fault in the system is serious cause of concern and it shall be prevented for reliable and secure grid operation.
- 14. Preliminary Report has been received but DR/EL, detailed report and remedial measures report is still awaited from UPPTCL.

Points for Discussion:

- 1. Exact sequence of events in view of cause of event; protection operation/non-operation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
- 2. Exact location of fault and nature of fault.
- 3. Sequence of tripping needs to be reported and explained.
- 4. Reason of multiple element tripping without any fault in the system.
- 5. Arrangement of station auxiliary supply and its back up at 400/220 kV Obra-B TPS to be shared. Also reason of tripping of all running units needs to be explained.
- 6. Reason of tripping of 400 kV transmission line (400 kV Obra-Rewa Road and 400 kV Obra-Sultanpur ckt) needs to be reviewed.
- 7. Availability of time synchronized SCADA SoE to be checked and corrected.
- 8. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL.

No representative from UPRVUNL presented during the meeting.

NRPC raised concern about absence of concerned person from constituents specially from generation side and requested all the STU/SLDC to share the feedback with generators.

NRPC would also write letter to all the heads of state generating companies for presence in the various RPC meeting.

F. Complete outage of 220 kV Kota TPS and Sakatpura (Raj) at 21:00hrs of 20th Oct and 14:26hrs of 13th Nov 2018.

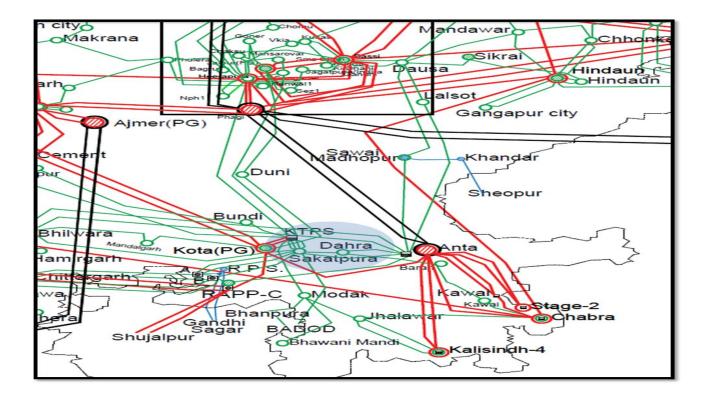
Event category: GD-1

Generation loss:

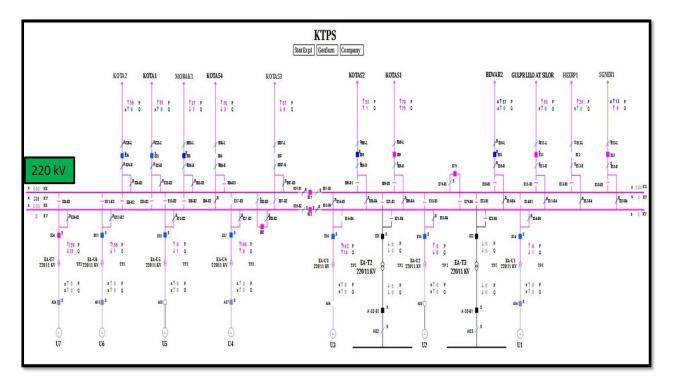
	850 MW (20.10.18)
	700 MW (13.11.18)
Loss of load:	
	150 MW (20.10.18)
	250 MW (13.11.18)
Energy Loss:	Rajasthan may confirm about energy loss Nil MU (20.10.18) Nil MU (13.11.18)

Data Summary received/available at NRLDC:

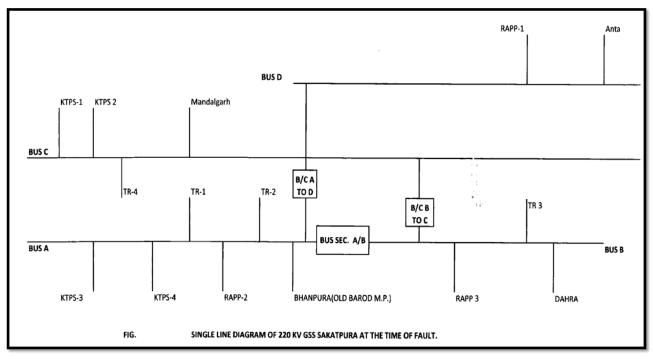
Description	Reference	Fault Info	Remarks
Fault Clearance	PMU data	840ms	20.10.2018
Time		1160ms	13.11.2018
		R&B-phase	20.10.2018
Phase of the fault	PMU data	to earth fault	20.10.2010
Fliase of the fault		Three phase	13.11.2018
		fault	15.11.2018


Description	Utilities	Status	Remarks
Availability of		Available	20.10.2018
Digital Data	ability of Available (Partial) 12 11 2018		
(SCADA Data)		(1 0 0 0)	13.11.2018

DR/ EL	Paiasthan	Received	20.10.2018
	EL Rajasthan (Par minary ort Rajasthan Rece	(Partial)	13.11.2018
Preliminary Report Rajasthan			20.10.2018
	Rajasthan	Received	13.11.2018
Dotailed Report	Paiasthan	Not Received	20.10.2018
	Kajastnan	NOT RECEIVED	13.11.2018

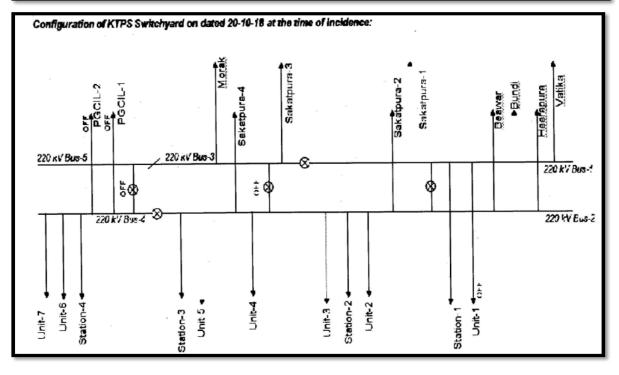

Description	Clauses	Utility	Remarks
Violation of Clauses	1. IEGC 5.2.r & 5.9.6.c (VI) 2. CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2) 3. 43.4.A, 43.4.C.4 & 43.4.D of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3, 6.4) CEA (Technical standard for connectivity to the Grid, Amendment Regulation 2013), part-II, B2 4. CEA Grid Standard 3.1.e 5. CEA Transmission Planning Criteria	Rajasthan	 DR/EL, Preliminary report within 24hrs Detailed Report yet to be received Non-Availability of Numerical Bus Bar/LBB Protection at 220 kV and above S/s Correct operation of Protection System Delayed Clearance of fault Adequately Sectionalized and graded protective relaying system

Based on above information description of the events is:


- 220 kV Kota TPS is connected with Sakatpura four ckt, Kota (PG) D/C, Heerapura S/C, Vatika S/C, Bundi S/C, Beawar S/C, and Morak S/C. Kota TPS has total seven units (capacity of 2x110+3x210+2x195 MW). It has DM (double main single breaker) bus bar scheme. 220 kV buses are sectionalised in total five parts.
- 2. Connectivity and SLD of 220 kV Kota TPS and 220 kV Sakatpura (Raj):

Single Line Diagram: Kota TPS (220kV)

Single Line Diagram: 220 kV Sakatpura



- 3. <u>Event Description for 20th Oct 2018 event:</u>
 - a. In antecedent condition unit-1 of 110MW was under planned outage. 220 kV KTPS-Kota (PG) ckt-1 & 2 was also under shutdown along with 220 kV bus section-3 & 5.
 - b. At 220kV KTPS (Raj) switchyard heavy arcing occurred at 220kV Kota Th(Raj)-Morak(Raj) feeder during restoration activity of 220kV Bus 3 & 5, due to this Bus coupler 1 tripped on earth fault and various emanating feeders tripped resulting in tripping of all the running units. As per PMU, Voltage dip in all the three phases is observed and dip in frequency of around 0.052Hz is observed.
 - c. Name of the tripped element:
 - 220kV Kota Th(Raj) –Sakatpura(Raj) ckt 1,2,3,4
 - 220kV Kota Th(Raj)- Morak(Raj)
 - 220kV Kota Th(Raj)-Kota(PG) D/c
 - 220kV Kota Th(Raj)-Vatika(Raj)
 - 220kV Kota Th(Raj)-Beawar(Raj)
 - 220kV Kota Th(Raj)-Heerapura(Raj)
 - 220kV Kota Th(Raj)-Silor(Raj)
 - 220kV Kota Th(Raj) Unit#2,3 4, 5, 6,7
 - 220kV Sakatpura(Raj)- RAPP A ckt 1,3

- 220kV Sakatpura(Raj)- RAPP B ckt 2
- 100MVA ICT 2 & 3, 160MVA ICT 1 & 4 at 220kV Sakatpura(Raj)

d. As per RRVUNL report:

				Preli	minary	/ Report	
Date 8 Introd	<u>& Time of event</u> uction of Event			018 & 21:00 g of various e		PS due to fault at 220 KV KTPS- Modak.	
Total L	Loss of Generation		: 1130 M	W (D.C.	1026 MW)		
Total L	Loss of Load:		:				
<u>Trigge</u>	ring Incident:.		of 220k	V Bus 3 & 5 a	yard heavy arc and due to this of all the runn	ing occurred at 220kV KTPS –Morak feeder the B/C -1 tripped on E/F and various ema ing units.	during restoration activit nating feeders tripped
S.NO.	NAME OF ELEMENT	TRIPPING	TRIPPING	CLOSING	CLOSING TIME	INDICATION	REMARKS
1.	KTPS Unit No.2	20.10.2018	21.00 Hrs.	21.10.2018	5.57 Hrs.		Grid Station failure at KTPS.
2.	KTPS Unit No.3	20.10.2018	21.00 Hrs.	21.10.2018	7.49 Hrs.		At KTPS end switch yard heavy arcing occurred at 220kV
з.	KTPS Unit No.4	20.10.2018	21.00 Hrs.	21.10.2018	11.22 Hrs.		KTPS –Morak feeder during restoration activity
4.	KTPS Unit No.5	20.10.2018	21.00 Hrs.	21.10.2018	12.32 Hrs.		of 220kV Bus 3 & 5 and due to this the B/C -1 tripped on
5.	KTPS Unit No.6	20.10.2018	21.00 Hrs.	20.10.2018	21:44 Hrs	SAKATPURA END:- CARRIER RECEVIED ,NO TRIPPING;M/T	E/F and various emanating feeders tripped resulting in
5.							tripping of all the

Tripping of KSTPS Unit-2,3,4,5,6,& 7
20-10-2018
21:00 Hrs

4. Incidence :

Prior to tripping all the KSTPS Units (except Unit-1) were running normal and all the 220 kV feeders were connected (except 220 kV KTPS-PGCIL-1 & 2). At 220 kV KTPS Switch Yard, the 220 kV Bus-3 & 5 were under shutdown and process of charging the Buses and normalization was under progress. Due to fault at Isolator of 220 kV KTPS - Morak feeder all the running units along with various 220 kV feeders tripped and total black out was observed at KTPS, Kota. The details of tripping of various Units and 220 kV Feeders are as follows:

S.No	Unit/Feeder	Breaker opening Time	Remarks
1	Unit-2	20-10-18; 21:00	Operation of Lock out relay
2	Unit-3	20-10-18 ; 20:59:30	Loss of all fuel
3	Unit-4	20-10-18 ; 20:59:30	Loss of all fuel
4	Unit-5	20-10-18; 21:02:46	Loss of all fuel
5	Unit-6	20-10-18; 21:00:05	Generator O/V protection
6	Unit-7	20-10-18; 21:00:49	Operation of Lock out relay
7	Station Trafo-1	20-10-18 ; 21:01:12	Tripped on Earth Fault protection
8	Station Trafo-2	20-10-18 ; 21:01:14	Tripped on Earth Fault protection
9	Station Trafo-3	20-10-18 ; 21:00	Tripped on Earth Fault protection
10	Station Trafo-4	20-10-18 ; 21:00	Tripped on Earth Fault protection
11	KTPS-Heerapura	-no tripping at KTPS end-	Tripped on Distance protection Zone-1 at Heerapura end
12	KTPS-Vatika	-no tripping at KTPS end-	Tripped on Zone-3 at far end
13	KTPS-Bundi	-no tripping at KTPS end-	Tripped on O/C & E/F at Bundi end.
14	KTPS-Beawar	20-10-18 ; 20:57:37	Tripped on Z-1 at KTPS end.
15	KTPS-Morak	-no tripping at KTPS end-	Tripped manually at KTPS end.
16	KTPS-PGCIL-1	Under Shut down	-
17	KTPS-PGCIL-2	Under Shut down	-
18	KTPS-Sakatpura-1	no tripping at KTPS end	Tripped on Dir E/F protection at Sakatpura end.
19	KTPS-Sakatpura-2	no tripping at KTPS end	Tripped on Dir E/F protection at Sakatpura end.

20	KTPS-Sakatpura-3	no tripping at KTPS end	Tripped on Dir E/F protection at Sakatpura end.
21	KTPS-Sakatpura-4	-no tripping at KTPS end-	Tripped on Dir E/F protection at Sakatpura end.

5. Investigation:

On investigation it was revealed that at 220 kV KTPS Switch Yard, the 220 kV Bus-3 & 5 were under shutdown and process of charging the Buses and normalization was under progress which was started around 17:00 hrs.

The charging of Bus-3 & 5 was done by closing of Bus-Coupler-2, Bus-Coupler-3 & Bus Sectionalizer-1. After charging the Bus -3 & 5, the 220 kV KTPS-Sakatpura-3 has been shifted to Dus-3 and changeover of 220 kV KTPS-Morak feeder was under process. The Dus-3 Isolator of Morak feeder has been closed and as soon as opening of Isolator of Bus -2, some arcing was observed at the Isolators of Bus-Coupler-2 and it tripped on Earth Fault protection while Bus Coupler-3 was tripped manually as a sparking was also observed at Isolators.

Due to this happening, the Morak feeder was again shifted to Bus-2 in order to check the problem of B/C-2. After closing of Bus-2 Isolator of Morak feeder and before opening of Isolator of Bus-3, suddenly a flash over occurred on Bus-2 Isolator of Morak feeder and at the same time tripping of Bus Coupler-1 on Earth fault protection was there. The Morak feeder started acting as a Bus Coupler and all the current now started flowing through the Isolators of Morak feeder causing heavy arcing which ultimately damage the Isolator. All the Station Transformers were tripped on Earth Fault Protection .The 220 kV emanating feeders were tripped at far end except Beawar feeder while Morak feeder was tripped manually. As no corridor was available at KTPS, a complete black out occurred .

6. Restoration :

S.No	Unit/Feeder	Restoration Time
1	Unit-2	21-10-18 ; 05:57 hrs
2	Unit-3	21-10-18 ; 07:48 hrs
3	Unit-4	21-10-18 ; 11:21 hrs
4	Unit-5	21-10-18 ; 12:32 hrs
5	Unit-6	22-10-18 ; 17:52 hrs

The start up supply was taken from 220 kV KTPS-Sakatpura-1 feeder at 22:44:01 Hrs as directed by LD. Rest of the feeders and Generating Units were restored as follows:

6	Unit-7	22-10-18 ; 19:24 hrs
7	KTPS-Vatika	21-10-18 ; 05:52 hrs
8	KTPS-Bundi	21-10-18 ; 05:51 hrs
9	KTPS-Beawar	21-10-18; 06:03 hrs
10	KTPS-Sakatpura-1	20-10-18 ; 22:44 hrs
11	KTPS-Sakatpura-2	21-10-18; 01:17 hrs
12	KTPS-Sakatpura-3	21-10-18 ; 07:40 hrs
13	KTPS-Sakatpura-4	21-10-18; 07:44 hrs

7. Analysia :

The tripping of Bus-Coupler-1 is the main cause of this incidence. Due to the tripping of B/C-1, the Morak feeder becomes a B/C and the current which was flowing through B/C-1, started flowing through the Morak feeder Isolators. This high current caused heavy arcing and resulting in damaging of Bus-2 Isolator of Morak feeder. The tripping of Station Transformers and other outgoing feeders resulting in tripping of Generating Units.

-1 LINE A IL1 1346.992 1903 701 2300.19 2/95 701 LINE A IL2 1323.667 11:4 663 2301.539 229363 MANANA LINE_A_IL3 1505.425 2057.98 117.05 LINE A IN 104.095 -157.896 463.130 160.49 LINE LLT 22986.077 -35194 18097.526 92277 409 152118967 MAHAMAMAMAMAM will have LINE_LLZ E3361.27 INE_ULS 30511 099 92309.224 152268140 21:00:49.6 ZAAAAAZA . A N 21:00:49.950815 21:00:50.623815

DR of 220kV KTPS (end)-Vatika

Reverse zone setting needs to be looked into (It should be co-ordinated with Z-2 timing) Line tripped from Heerapura end on distance protection Z-3.

DR of 220kV KTPS (end)-Heerapura

	- IAT Tide	=145	InsPeak	Fese	ins:Va	Reyal	Nadlock	NrPeak	5
	UVE_AJL1	136.332	-1903.70	347,801*	1822.452	932: 991	2302.134	2295.70	
······································		132:357	-1825.520	237.268	922 384	1154559	2301.633	229363	
······································	UNE AJL3	1302.435	2387.994	117.051*	- 009 846	-2064 3.6	2166.575	-2174.088	
		104.095	157 898	221.087	08.76	-46.535	453.190	-460.490	
		22966.377	-35484 999	277.833	11613.166	19057.526	132277.408	-192 13 967	,
WILLIAM CAMPLEAR CAMPAGAMESAMESAMESAMESAMESAMESAMESAMESAMESAMES	UNE_UL2	34964.316	53361.272	기 804"	13540.544	-10683 568	132613.766	1927255*9	,
	LINE_ULS	33611.395	-4969 58"	235.051*	19858. 9 46	13253.115	132309.224	192263 * 40	,
2 1389 1496 17 <u>92 1369 1488 1381 1380 1389 1398 1398 1398 1398 1398 1398 1398</u>	A ZONE 4 5 A BAY IN HI	TATT V DRVAL A	N 21:00:46.7	30615 21.0	D 49.641815	884		*	-
	A CB FEAU A CB RPH A CB RPH A CB PPH C A CB PPH C A CB PPH C A CB PPH C A CB PPH C	LOSE A	N 21.00.45	60615 21:0	0 50.623815	000 000 000 000 002 000			

Reverse zone setting needs to be looked into (It should be co-ordinated with Z-2 timing) Line tripped from Heerapura end on DP Z-1. (it seems line tripped after 1000ms)

DR of 220kV KTPS (end)-Bundi

<u>-</u>	m	1001	000														
		1.1.1.	WW	HWY	AA	MA	WN	jij	LNEALI	115:547	1:1.727	23.352	1452 441	1691.363	1291,965	-1941.536	4
	vvvv	AAA	AAA	AA	M	VAA	AN.	ц́і	LINE_A_12	603 380	816.64 ·	226 234"	-601.362	-544,291	1251.108	-1021-264	4
	\sim	m	\sim	shi	NA.	λų.	A/A	pp_	LINE_A_L3	1117.251	1971.036	139 :92'	1186 001	209.433	· 29L445	-1572.488	4
	ij	ŴŴ	WW	Vird	WAY.	ivy?	14	W.	LINE_A_N	779541	101.056	105.2051	23372	1257.105	295.973	-147_696	4
MANNAA	AAA				~~~		+		UNE_LO	975 777	849 836	382 544"	287.279	2328154	16101625	-196102.610	y
, AAAAAAAA		AAA	At the	AAA	Ŵ	₩.	AΛ	$\wedge \sim \sim$	LUNE_1.12	8362 054	-119114.791	181.762	-119114 591	16262- 376	- 25231.164	-195102.615	v
	<i>ffffff</i>	Ŵ	WW	1/	~ .~.~		-	~ ~~~	LINE_LL3	7842,793	-11282.834	304,375*	12491.925	157506.224	12255 930	-192571.662	У
								MM	LINE_LIN	78628177	106329 558	185.235'	106329 859	-50E.264	19948.875	-152352.798	۷
~~~~~	~~~~j	AN	hhh	ΫψŲ	9,9,9	5YY	Y/J	<u></u>	LINE_B_L1	115_547	1:172	23.3.2	1452 441	1691.365	1 291.865	-1942.536	4
᠋᠂ᡘᢦᡐᡘ᠇ᡘᢌᡐᡘᡪᡐᡗ	᠕ᠰᡘᡐᡐᠺ	A44	AAA	AAA	NN	WA	AA	<u>A</u> / <u></u>	LINE_B_12	603 380	-846.64	226.234*	601.362	-544,291	1251.108	-1023-264	A
	m	inn	$\sim$	24	111	WW.	ψŀ	<u> </u>	LINE_8_13	1117.251	117.036	139.32*	1185 031	209.433	1291,445	1572.489	4
2	î,	AAA V V V	ΫŴ	And	Ŷţţ	ívý	i de	VV	LINE_B_N	779 541	103.056	105.2051	293.372	1257.005	195.973	-1472696	A
2		0.mp	160 · · · ·	2	180	240	192	1982	4 ZNDI STA	an t	1 21:10 10	39295 21	10 49 : 02297 10 49 : 24297	00×			
		-							415 10	ÚE_ON Å	1						
5	and the second states	i	NEW COLEY	a la si cotasi	100000	Service and	1.÷.,	and the second second	4 EST_IFP	Pi à	1	176140022668		00	a de la Marca da	AND THE COMPANY	-
P5 Sat - 20/10/2018 21::0-19 (	46297 Delta X:	301.30C ms	15.050 cyc	¢930 hz;	fic 1500 H	-2 AS	2 OK	Delta Y. No Sars						à			_

## DR of 220kV KTPS (end)-Beawar

) ( D 🗆	Tit	RYS	re ^c an	Phase	IncVal	ReVel	140 -
ᢌᡐᡗᢦᡐᡐᡐᡧᡐᡧᡧᡧᡧᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤ	UVE_A_L1	23750	- 82.296	25.952	·10 ¥€	1303 740	2031 3
᠕᠕᠕᠕᠕᠕᠘ᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤᢤ	UNE_0JL2	-42143	-93 519	·13.15	-77.670	-723 561	2.2
᠆᠆᠂ᠵᠺᡘᢌᡐᡐ᠋ᡐᡐ᠋ᡧ᠋ᡧᡧᡧᡧᡧᡧᡧ᠖᠋ᡭᡭ᠖ᡭᡭᡬᡭᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬᡬ	UNE_A_IL3	*35746	- 84.522	343.405	189.256	3574	2013
AVAVAVAVAVAVAVAVAVAVAVA	UNE_0_IN	5633	· 621	343.50	2.567	82354	6741
/A	มห£_นา	-35315325	- 92022 <del>3</del> 21	2:25	-138021.031	2503 720	233
ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	UNE_LL2	3515387	93246035	·03.744*	45232.907	122368.085	:323
WA	UNE_LLS	*3580.952	*92954.521	343.590*	184678.304	16895E.753	1995
MAANNAN MAANAANAANAANAANAANAANAANAANAANAANAANAAN	UME_LN	3473.502	-3238.64)	297.77	548.004	48537.697	1983
ᡄᡘᠣ᠋ᡧᢣᡘᠣ᠋᠋ᠧᡷᠧᡶᡶᡧᡧᡧᢤᢤᢤᢤᢤ᠋ᡭ᠕ᡱᡭᡃᡦᢑᡬᢧᡀᢆᠶᢞᠶᡭᢢ <del>ᡁ</del>	UNEBJUI	-23 750	- 82.296	28.957	10 ¥E	1303 740	2001
᠕ᡐᡐᡐᡐᡐᡐᡐᡐᡐᡧᡧᡧᡭᠻᡭᢢᢢᢔᢔᢔᢔᢔᢔᢔᢔᢔᢔ	UVE BJL2	*42143	-93 519	*13.15**	-77.670	-723 361	2-3
᠆᠆ᢞᢦᡗᡐᡐᡐᡐᡐᡐ᠋ᡐᢠ᠋ᢓᡧᢓᡧᡧᡧᡧᡭ᠕᠋ᢤᡭ᠕᠋ᢤᡭᢋ᠋ᢤ᠋ᡬᡧᡬᡀᢓᢋᡟᡩ᠋ᢤ	UVE_B_IL3	35746	- 84.522	343.405	189.258	3574	3013
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UNE_B_N	5633	·6.*	343.507	5567	812354	64
	k Zv(46 A k TiFl (14 e (10 - 39) e TiS (20)	RT A	¥ 21:023 ¥ 21:023	738172 2	00 45 4831 78 100 45 55 11 78	82	
	1. W.K. JP	E ON	¥ 21:0043	509176 2	100 45.583178		
		(1) 3 1	Ĩ			Ö	
5 jant - 20,702/2008 21,004/8 257127 Delta 24 451.000 ms (20,355 cyc. (9,55 ms) (6, 3000 Hz AS CM Delta Y. Ho Bans							

DR of 220kV KTPS (end)-Sakatpura ckt-1

			Ttb	RMS	IrsFeak	Phase	nsNa	ReVal
	A A A A A A A A A A A A A A A A A A A		LINE_IL1 Line_IL2	2930.577 901.552	-3014.379 1200.163	133.386° 7.583°	-3614.879 1200.165	475 .100
⊷∽∽∽∽∽∽∽∽∽∽∽∽∽∽	WAX A A A A A A A A A A A A A A A A A A	A share a second	LINE IL3	2920.176	3619.140	237.308*	1348.100	· 00.353 3235 561
AAAAAAAAAA			LINE_IN ELS_ULT	2761.635 4795.781	-2748.093 3484.108	254.596° 74.172°	1534.351	-8965 242
AAAAAAA			ELS UL2 ELS UL3	35253.028 3551.667	-135705.622 13006 673	329.379	116854,215 -9353,514	- 82050.450 114483.478
000000000	A A A A A A A A A A A A A A A A A A		ELSUN	36078.015 1.050	120322.595	335.335° 234.336°	139114775 0093	-76536.038
under south of the state of the	-nanananananananananananananananananana		REN_ELS_IL1_D	2916.000	3832.050	3 398"	3332.080	4576213
			REN ELS 12)	393.854 2901.455	-1130.180 3731.750	137.5°8° 116.387°	-1193.130 -1835.853	1339.226 90.275
	- A A A A A A A A A A A A A A A A A A A		REN_ELS_IN_D	2749 671	376E.879 548C.2E4	74.535* 74.170*	804.356	-3146 782 -3058 183
	Mary har have a service and a service and		LINE_A_1PH_V" L3DHD_"	29.562	17,173	13.245	17.173	184.803
when the the the star the strength is the	Ajhara hara bara and a shara hara hara	and the second	L30-ID_2 L30-ID_3	13.264 35.195	24.744 25.512	14.904° 300.241°	9980 11.237	-25.872
			LIJO-IBIAS	3031.771 23.734	306C.2E1 26.589	25.100	2327.751	1877.309 22.321
			13340_2MAG	1.55	3.711	272.495*	8123	10 699
			L3DHD_3MAG	26.294	18.509	306.149*	13.039	8.527
-10 -	1 mo '80 '80 '20'	<u>'59' '40' 48' '88'</u>	4385005E	Å Å		,	000	
			A 33 B Philose	A 4				
			A ATSW OUT PO				000	
			A 3 DIFF-COMOK	44			000 000	
			A ATINH BI	A 4			80	}
			A ADERGRP1	AAN	7 10 48 7678	7 21:00:4	9433357 010	j
			N 245 STEWPE		2 10:48.7678	210	9433957 010	
			N 245 STRAL		2 10 49 4758	4 61.UL.	9,838357 006	(

Differential protection didn't operate. Line tripped from Sakatpura end on O/C E/F protection

DR of 220kV KTPS (end)-Sakatpura ckt-2

	Tile UNE IL1	R#\$	n::Peak -2051	7tase 248.638*	Incl/al	RetVa 1 703	HoPeak 1.775	VinFeak 4
	LINE IL2	2 274	-3.893	178.653*	-3.893	2.541	5.238	4173
and a should be a share a part of a share a sh		1254	-2.823	226.651*	-1 937	235	3 236	3425
MANNOV MANNOV MANNOV MANNOV	INF IN	3453	-1003	2045	4 567	2 17	5.547	6133
	0110 18 1	2603.681	3903 315	32 537	2539 536	8416.215	156083 334	-156257 029
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	BIE HI2	1235 9 784	-174061 389	30 165	166733 677	145768.620	154540 247	-154558 060
	DIK IN 2	116155 553	-1638 6.957	238240*	-143859.32	169273 384	1536-1 532	-153706 1.8
	BUE UN	\$2579.108	-130389.623	231.013*	25487 . 03	-15092 437	142499**8	-157394 6" 3
innanananananananananana	LINE M CTN	2 335	-2.503	132.354*	-2963	324	3.931	-3 239
	REN EUS L1 D	0.000	0.000	0 000"	0.000	0 000	C.000	0.000
	REN EUS 1.2 D	0.033	0.000	0 000'	0.000	0 000	0.000	0.000
	REN_EUS_L.S.D	0.000	0.000	0 000'	0.000	0 000	C.000	0.000
	RENEUSIND	0.000	0.000	0 000"	0.000	0 000	C.000	0.000
	LINE A P- VI	2503.681	3875 . 35	33717	2505 682	842E.027	195861 775	-195951 477
	L30-10_1	0.933	-1051	248.638*	1.263	1 703	1.775	-1.943
	L3040_2	2274	-3.893	178633*	-3 893	-2.541	3.238	4173
minane when have a provide the provide the second s	L3040_3	1.254	-2.023	226.651*	-1.937	2.16	3.236	3425
	L3D-IBIAS	2131	2.166	357.330*	2.165	1 351	2.336	0.216
	L3D-ID_IMAG	0.432	0.454	73 951*	0.4E7	0 350	C.724	0.001
	L30-10_344G	2173	2.166	23661*	2.176	1 351	2.336	0.001
	L304D_344G	0.904	1.055	334.653	1.040	1 841	1.670	0.010
	L3D-ID VS MAG	0.000	0.000	0 000.	0.000	0 000	C.030	0.000
1000' 1001' 1001' 1001' 100' 100' 100'	A C3 BP+C_CSE	A A			ü			
	A C3 Ph CLOSE	33			끉			
	A Boun North A A- SW OUT POS	2.2			ų,			
	A C3 B-ADY	55			茳			
	A DIF-C H FAIL	5 5	21:03 48 77565	5 21.07.45	1236657 11			
	A A- PREPSP	2 2			Ű.			
	A AF INHEIT A C3-103ED	33			븄		8	
	A A267-38-1	\$ \$	and a state of the	Non-Decar Burns	Ï	and a Merican server		error and take
		1						
		i						

Differential protection didn't operate. Line tripped from Sakatpura end on O/C E/F protection

DR of 220kV KTPS (end)-Sakatpura ckt-3

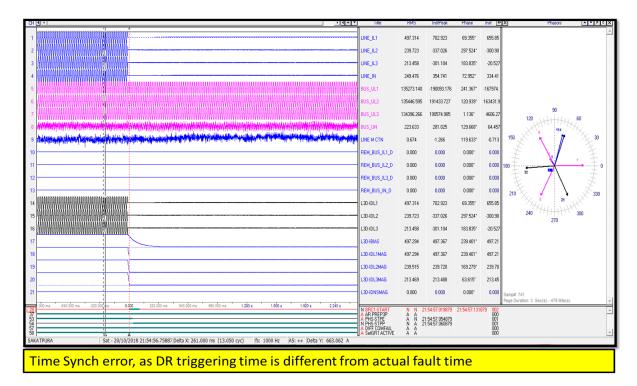
21_01 21_02 21_02 01_02 0102_02 0102_02 01_00 01_00 01_00 01_00 01_00	2.967 1.656 1.752 1.000 1.000 2.000 2.000 2.0475 1.67 2.(721 2.09 2.0065 %	2.821 C.701 E.551 C.000 C.000 C.000 15573.503 18064 527	160,14(* \$1.5*3* 380,332* 0.000* 0.000* 129,00*	-3 687 -3 479 4 360 3 300 3 300 3 300 3 300 3 300 3 300 11578 140	4.303 -2.02 11.110 0.000 0.000 -10.003	537).794 14:592).000).000	£.605 £319 1.729 1.000 1.000
CT_12 UNE_11 UNE_12 UNE_12 UNE_12 VT_U1 VT_U12 VT_U13 VT_U11	5.792 5.000 5.000 5.000 20475 567 20475 567	5.561 C.000 C.000 C.000 -15673.503	338.052* 0.000* 0.000* 0.000* 129.005*	4 360 0 300 0 300 0 300	11.1°0) (00) (00	14:592).000).000	-£319 1.729 1.000
UNE_11 UNE_12 UNE_12 (1_UL) (1_UL) (1_UL) (1_UL)	2.000 2.000 2.000 2.000 2.000 2.007 2.0721 2.09	C.000 C.000 C.000 -15673.503	C.000" C.000" C.000" 129.00E") 200) 200) 200	0 COD 3 COD	0.000 0.000	1.000
UNE_12 UNE_12 (7_01) (7_012 (7_013 (7_00)	1.000 1.000 20475 EE7 20721 209	C.000 C.000 -15673.503	(.00)° (.00)° 129.109°	0 000 0 100) (00	3.000	
UNE_LE (1_UL) (1_UL) (1_UL) (1_UL) (1_UL)	1.000 20475 187 20721 209	C.000 -15673.503	C007 129.00F	3:00			1.000
аци ация ация ация	2(475 ±7 2(72) 2(9	15673.503	129.000		-10003		
21_12 21_13 7_113	2721 209			11578.140		3.000	10.00)
ell'in Nul'in		18064 527			10765175	\$339 218	(587) N7
HUL_T	20063 76*		190.7EC	127233	50677 364	36728 562	663 1532
		5548 316	188.735*	3665.702	-11343 #6	34335 265	£1903 507
	1527¢ 110	405 2 (49	168.725*	34217.355	27545 138	163502.67	-156652.178
HCIN	1362	-0.043	137.317	3 33	1.04).95	-1.950
IPH_VT	₹.27	189. ME	393514	75.187	34.03	270536	-362.272
.1	2.867	-2.821	180.140	3 687	4.303		-5.605
2	1.696	-C.701	\$1.542	.) 179	2.02	1784	539
3	1.792	E.561	338.JE4"	4 360	1 110	11.047	1.021
4E	4.556	E.048	200 354"	4 126	4.686		1.196
1MeE	21-9	C.030	362 335	1.75)225		1005
2Marie	1136	C.090	538.524°	1165	0.570		2008
3446	L163	C.069	295.525*	1227	1(79		2.003
SMAG	1.000	000	C.00)*) :00	1000		: 000
3 14 14 24	ne Ne	1792 4,556 ME 1119 ME 1,136 ME 1,163	1.752 €.557 4.556 €.048 ₩5 1.119 €.039 ₩6 1.136 €.089 ₩6 1.163 €.089	2.782 2.551 388.254 4.556 £.048 2.803.547 4.5 2.048 2.803.547 4.5 2.11°3 0.009 382.327 4.5 2.136 0.089 2.95.327 4.5 2.163 0.069 2.95.327	1732 1557 338154 4136 4556 1508 38154 4136 45 11'9 1000 382354 116 46 1136 1080 381334 1165 46 1163 1088 25535 127	Ene 100 100 100 100 100 100 100 Ene 100 100 100 100 Ene 100 100 100 Ene 100 100 100 100 Ene 100 100 100 100 Ene 100 100 100 100 Ene 100 100 100 Ene 100 100 100 Ene 100 100 Ene 100 100 Ene 100 100 Ene 100	Energy Energy 100 1000 1000 1000 1000 1000 1000 100

DR of 220kV KTPS (end)-Sakatpura ckt-4

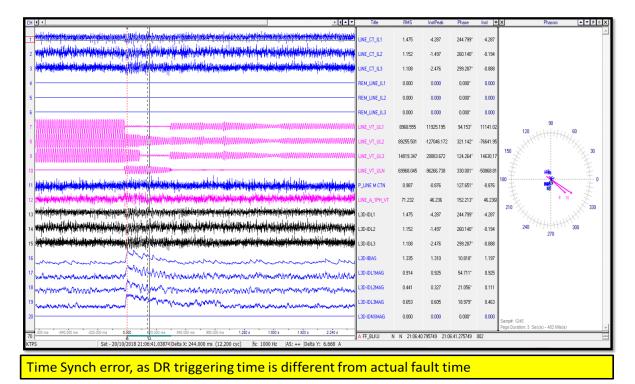
	Tide	FMS	rstPeak	Phase	hatial	ReVal	VarFeak	HrFed
mannan	UNE_CT_1_1	0.359	0.751	195.915'	-3 60E	2.473	2707	2.335
white and the second and the second second and the second se	LINE_C1_1_2	1.765	1.217	87.923	147:	1.327	3.570	5 552
wanter and fire and and and and and and and and and and	UNE_C1_1.3	1.122	0.993	67.887	-340E	2075	4.261	3.359
	REVLUNEJLI	0.000	0.000	0.000*	0.000	0.000	0.000	3 00C
	REV[UNE]L2	0.000	0.000	0.000*	0.000	0.000	0.000	3000
	REM_LINE_IL3	0.000	0.000	0.000*	0.000	0.000	0.000	3000
AVVIA WWWWWWWWWWWWWWW	LINE_VT_ULI	4234.010	** 01.236	45.078	2794.687	2 90.751	1940	193534.7
		10E47E . 72	* 39950, 493	350.636*	139950.493	1231 39410	193688.031	-193E7C.2
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	LIVE_VT_UL3	5853C.680	4192.228	220.671*	-5530.901	69375.132	19320 .801	-193042.6
Man Marin Marin Marin Andreas Andr		102765.62	55135172	333.431 *	137105.095	48423,431	145163.483	-159CE2.6
The second with the way and the second state of the second state o		1.238	0.215	74.625	-1 343	-2.050	2.385	2.557
man man man man man man man man man man		155.336	253891	207.999*	-213540	2.623	376.951	442.677
and the second of the second of the second of the second second and the second se	3010.0	0.359	0.751	195.915	-3605	2.473	2707	2.395
manune fin when a support of the second of t	3010_2	1.765	1.217	87.523	147	-1.327	3.570	5.552
	301845	1.311	-0.993	67.887	-) 40E	2075	4,261	3.359
	30-10142 30-10_11446	0.705	832	127.717	1.739	2.106	2.136	3240
	3010_104G	1.355	0.625	262.451'	0.599	0.778	1.086	300G
	3010_24456 3010_34466	1.335	0.744		1.113			2001
	30 ID VSNAG	0.000	0.744	237.382	0.500			3013
1.120 . 00 . 00 . 100 . 100 . 100 . 100		0.000		0.000*	0.000	0.000	0000	3000
	MC3 FIPH CLOSE MC3 YFH CLOSE MC3 BFH CLOSE FF ELKU BAY IN NORMA	*****	21:00:48 78508	E 21:30:45	000 000 345066 002 000			

Differential protection didn't operate. Line tripped from Sakatpura end on O/C E/F protection

e. As per RRVUNL report:


	inary <u>Report</u> Time of event						
	iction of Event		:		2018 & 21:05 Hrs.		
	oss of Generation		:			KV GSS SAKATPURA Kota	
	oss of Load:		:	20051	ww		
	ing Incident:.						
S.NO.	NAME OF ELEMENT	TRIPPING	TRIPPING	CLOSING			
		DATE	TIME	CLOSING DATE	CLOSING TIME	INDICATION	REMARKS
1.	220KV SAKATPURA- KTPS CKT NO-1	20.10.2018	21:05 Hrs	20.10.2018	22:47 Hrs.	м/т	Close after Clearance from KTPS & LD
2.	220KV SAKATPURA- KTPS CKT NO-2	20.10.2018	21:05 Hrs	21.10.2018	01.18 Hrs.	SAKATPURA END: 64NX,86	:
3.	220KV SAKATPURA- KTPS CKT NO-3	20.10.2018	21:05 Hrs	21.10.2018	07.40 Hrs.	SAKATPURA END: 64NX,86	
4.	220KV SAKATPURA- KTPS CKT NO-4	20.10.2018	21:05 Hrs	21.10.2018	0741 Hrs.	SAKATPURA END: 64NX,86	
5.	220KV SAKATPURA- RAPP(A) NO-1	20.10.2018	21:05 Hrs	20.10.2018	21:44 Hrs	SAKATPURA END:- CARRIER RECEVIED ,NO TRIPPING;MT	
6.	220KV SAKATPURA- RAPP(B) NO-2	20.10.2018	21:05 Hrs	20.10.2018	21:50 Hrs	SAKATPURA END:-:- M/T RAPP B End:- Z-2, Phase "A" &"C" Dist. 80 Km	
7.	220KV SAKATPURA- RAPP(A) NO-3	20.10.2018	21:05 Hrs	20.10.2018	21:45 Hrs	SAKATPURA END:- CARRIER RECEVIED ,NO TRIPPING;M/T	
8.	220KV SAKATPURA- ANTA	NO TRIPPING					ALREADY OPEN AT ANTA END on dated 20.10.2018 AT 19:43Hrs. LD APPROVEL NO LD 367 & NRLD 1493

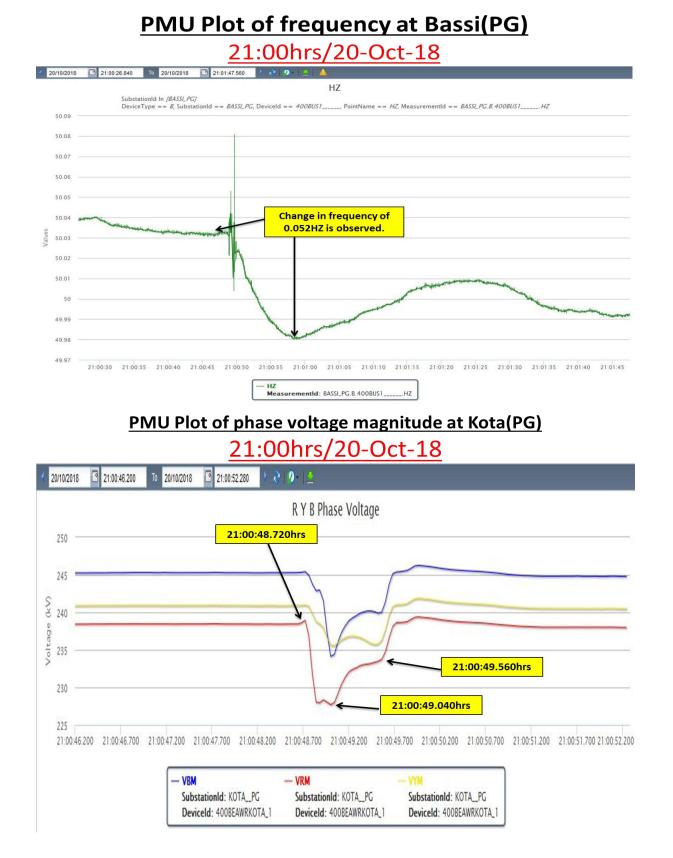
9.	220KV SAKATPURA- MANDALGARH	20.10.2018	21:05 Hrs	20.10.2018	21:35 Hrs	NO TRIPPING	Before supply failure lo of Mandalgarh was beir supplied. After incidant the supply at GSS taken from Bhilwara through Bhilwara- Mangalgarh- Kota(s) line.
10.	220KV SAKATPURA- DAHRA	20.10.2018	21:05 Hrs	20.10.2018	22:10 Hrs	SAKATPURA END:- M/T DAHRA END:-Z2 ,A- PHASE	
11.	220KV SAKATPURA- BHANPURA(M.P.)	20.10.2018	M/T AT 21:10 Hrs	20.10.2018	22:50 Hrs	SAKATPURA END:- M/T AT 21:10 Hrs BHANPURA(M.P.)END:- Z2,R,Y& B PHASE,DIST =81.5 Km TRIPPED AT 21:05Hrs	
12.	220/132KV 100MVA Tr-4	20.10.2018	21:05 Hrs	20.10.2018	21:44Hrs	SAKATPURA END:- 220KV SIDE 64NX,86; 132KV SIDE INTER TRIP	
13.	220/132KV 160MVA Tr-1	20.10.2018	21:05 Hrs	20.10.2018	21:35Hrs	SAKATPURA END:- M/T 132KV SIDE AT 21:10 Hrs DUE TO SUPPLY FAIL	£1
14.	220/132KV 100MVA Tr-2	20.10.2018	21:05 Hrs	20.10.2018	21:36 Hrs	SAKATPURA END:- M/T 132KV SIDE AT 21:10 Hrs DUE TO SUPPLY FAIL	
15.	220/132KV 100MVA Tr-3	20.10.2018	21:05 Hrs	20.10.2018	21:42 Hrs	SAKATPURA END:- M/T 132KV SIDE AT 21:10 Hrs DUE TO SUPPLY FAIL	
16.	220KV B/C B TO C	20.10.2018	21:05 Hrs	20.10.2018	21:36Hrs	. SAKATPURA END:- 64NX,86	
17.	132 KV SAKATPURA- RLY 1 & 2	20.10.2019	21:05 Hrs	20.10.2018	21:35 Hrs	SAKATPURA END:- NO TRIPPING, NO INDICATION BOTH END	


DR of 220kV Sakatpura (end)-KTPS 1

	Title	RMS	InstPeak	Phase	Inst 😐 🕽	X Phasors Y P C
	LINE_IL1	192.424	272.542	37.780*	170.32	-
2	LINE_IL2	221.894	-314.431	283.099*	-307.85	
3	LINE_IL3	231.826	326.831	159.142*	112.88	
	LINE_IN	21.251	-30.422	227.733°	-24.646	
	BUS_UL1	135263.723	-190934.440	221.332*	-127078.	
6	BUS_UL2	135500.101	190681.291	100.895*	187811.7	
	BUS_UL3	134456.713	-190702.313	341.057*	-60679.0	90
 A statistical design of the second des	BUS_UN	144.552	185.007	93.753*	49.890	
s fur the interstation product the statistical statistical statistical products the physical product of the physical products the physical products and the physical products and the physical products and the physical ph	LINE M CTN	0.601	-0.825	193.409*	-0.535	150 1 , 2 30
10 1 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	REM_BUS_IL1_D	189.249	-271.245	218.200°	-163.97	É E
	REM_BUS_IL2_D	217.222	309.293	103.154°	299.07 1	180
	REM_BUS_IL3_D	229.820	-324.701	339.357*	-108.48	モーショー
13	REM_BUS_IN_D	23.827	32.664	38.406*	26.604	210 9 330
	L3D-IDL1	4.705	7.699	14.367*	6.349	240 +++++++++ 300
	L3D-IDL2	6.719	-11.117	280.616*	-8.783	270
15 Nordelling and a state of the state of th	L3D-IDL3	4.442	7.893	136.129*	4.390	
	L3D-IBIAS	231.777	231.822	37.323*	231.79	
18 minute and the second state	L3D-IDL1MAG	3.757	3.816	353.623*	3.501	
18 man war and a start and a start and a start and a start	L3D-IDL2MAG	4.749	5.655	26.656*	5.655	
20 mar mar mar and mar and and and and and and and and and and	L3D-IDL3MAG	2.242	2.213	19.748*	2.154	
21	L3D-IDNSMAG	0.000	0.000	0.000*	0.000	Samp#: 21 Page Duration: 3 Sec(s) - 483 Mils(s)
100 ms 440 000 ms - 320 000 ms 0,000 i 220 000 ms 440 000 ms 980 000 ms 1280 s 1.500 s 1.520 s 2.249 s 37 37 38 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	N BRC1-START A AR PREP3P	N A 20 A A A A	37:27.906391		001	
S8 A SAKATPURA Sat - 20/10/2018 20:37:26.92535 [Delta X: 981.000 ms (49.050 cyc)] fs: 1000 Hz AS: ++ Delta Y: 243.549 A	A SetGR1 ACTIVE	A A			000	
Time Synch error, as DR triggering time is different fro	<mark>m actu</mark>	ial fa	ult tir	me		

DR of 220kV Sakatpura (end)-KTPS 2

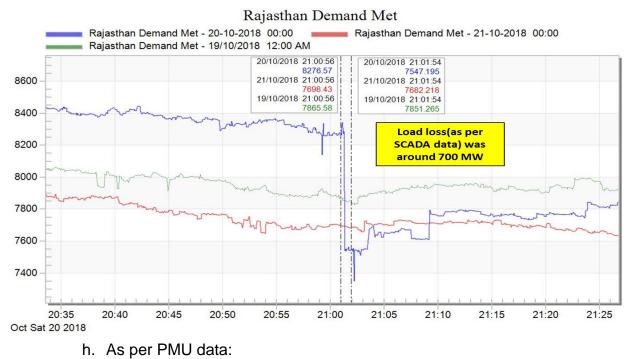
DR of 220kV Sakatpura (end)-KTPS 4



Name of Element	Date and time of tripping	Date and time of closing		
220 KV KTPS-1	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 22:47 Hrs		
220 KV KTPS-2	20.10.2018/ 21:05 Hrs	21.10.2018/ 01:18 Hrs		
220 KV KTPS-3	20.10.2018/ 21:05 Hrs	21.10.2018/ 07:42 Hrs		
220 KV KTPS-4	20.10.2018/ 21:05 Hrs	21.10.2018/ 07:44 Hrs		
220KV RAPP(A) NO-1	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 21:44 Hrs		
220KV RAPP(B) NO-2	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 21:50 Hrs		
220KV RAPP(A) NO-3	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 21:45 Hrs		
220KV MANDALGARH	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 21:35 Hrs		
220KV DAHARA	20.10.2018/ 21:05 Hrs (M/T)	20.10.2018/ 22:10 Hrs		
220KV BHANPURA(M.P.)	20.10.2018/ 21:10 Hrs (M/T)	21.10.2018/ 00:22 Hrs		

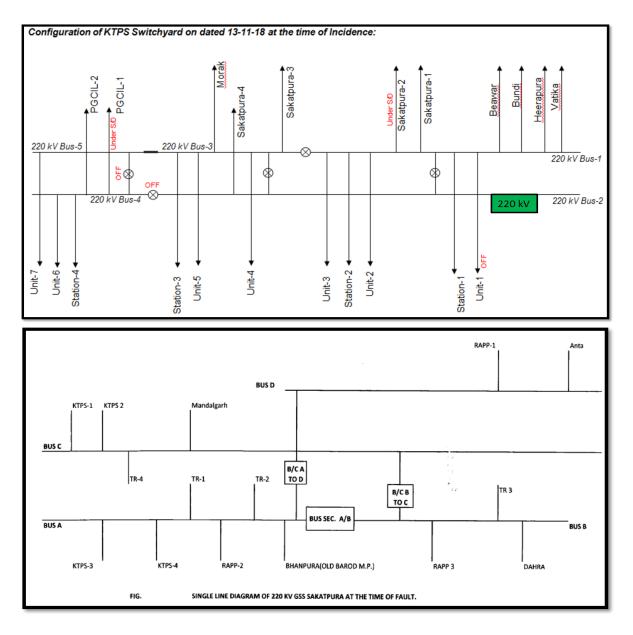
	C ,	pped in Z2 or E/F from local/remot
		ion fail in the same time due t
	lowing feeders tripped from local,	/remote end :-
1.	220kV Sakatpura-KTPS-3	tripped on E/F from local end
2.	220kV Sakatpura-KTPS-4	tripped on E/F from local end
3.	220kV Sakatpura-RAPP-2	tripped in Z-2 from remote end
4.	220kV Sakatpura-Bhanpura(M.P)	tripped in Z-2 from remote end
	Above 220kV feeders are running	g on Bus-A and distance protectio
	scheme not commissioned on K1 meter only.	PS-3&4 due to short line length 90
5.	220kV Sakatpura-RAPP-3	tripped on Z-1 from remote end
6.	220kV Sakatpura-Dahra	tripped on Z-2 from remote en
7.	220kV Bus Coupler (B-C)	tripped on E/F from local end
	Above 220kV feeders are running) on Bus-B
8.	220kV Sakatpura-KTPS-1	Not tripped
9.	220kV Sakatpura-KTPS-2	tripped on E/F from local end
10.	220kV Sakatpura-Mandalgarh	Not tripped(radial feeder)
	Above 220kV feeders are running	g on Bus-C and distance protectic
	scheme not commissioned on K1 meter only.	PS-1&2 due to short line length 90
11.	220kV Sakatpura-RAPP-1	tripped on Z-1 from remote end
12.	.220kV Sakatpura-Anta(GTPS) Above 220kV feeders are running	Not tripped(already open at Anto on Bus-D.

 On 20.10.2018 at 21:05 Hrs, a Blast has been observed with highly flash over in the 220 kV Yard of KTPS simultaneously All 220 kV Ckt from 220 kV KTPS Supply to Sakatpura fail in the same time other source of 220 kV i.e. 220 kV RAPP No. 1, 2, 3 and Bhanpura (M.P.) tripped from other end and it has been observed that supply of 220 kV Sakatpura isolated from all 220 kV feeding sources


f. PMU data of frequency and phase voltages:

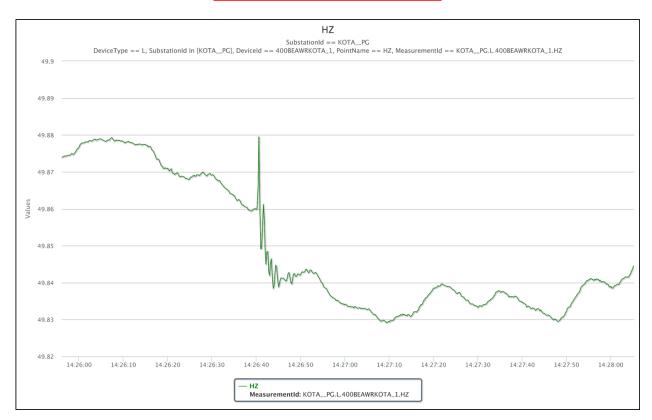
Time	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
20:58:05:081	КОТА	220kV	E_02(KTPS2)	Circuit Breaker	Open	Main CB of 220kV Kota(Raj) – Sakatpura(Raj)(end) ckt-2 opens
20:58:07:238	КОТА	220kV	E_06(KTPS4)	Circuit Breaker	Open	Main CB of 220kV Kota(Raj) – Sakatpura(Raj)(end) ckt-4 opens
21:00:48:011	MANDL_R	220	02KOTAPG	Circuit Breaker	Open	
21:00:48:150	DYRA	220kV	E_01(KOTAS-1)	Circuit Breaker	Open	
21:00:48:162	КОТА	220kV	16MBC	Circuit Breaker	Open	Bus coupler opens
21:00:48:209	КОТА	220kV	E_XX(RAPPB)	Circuit Breaker	Close	
21:00:48:299	КОТА	220kV	E_03(KTPS3)	Circuit Breaker	Open	Main CB of 220kV Kota(Raj) – Sakatpura(Raj)(end) ckt-3 opens
21:00:48:654	VATIK_R	220	04KTPS	Circuit Breaker	Open	
21:00:48:860	КОТА	220kV	E_23(T4)	Circuit Breaker	Open	220kV side Main CB of 220/132kV ICT 4 at Sakatpura(Raj)(end) opens
21:00:48:866	КОТА	132kV	D_46(T4)	Circuit Breaker	disturbe	
21:00:48:984	KTPS	11kV	E_15_G(U2)	Circuit Breaker	Open	Main CB of Unit 2 at Kota(Raj) opens
21:00:49:580	KTPS	220kV	E_10(BEWAR-2)	Circuit Breaker	Open	Main CB of 220kV Kota(Raj) –Beawar(Raj)(end) opens
21:00:49:775	KTPS	11kV	E_18_G(U5)	Circuit Breaker	Open	Main CB of Unit 5 at Kota(Raj) opens
21:00:49:789	KTPS	11kV	E_16_G(U3)	Circuit Breaker	Open	Main CB of Unit 3 at Kota(Raj) opens

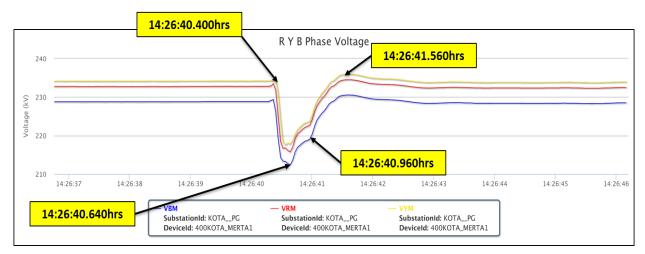
g. SCADA SoE and Analog data:


Rajasthan Demand pattern during tripping

- As per PMU, Maximum dip in R&B-phase.
- Fault Clearance time: 840ms

- SoE captured, Unit-2 tripped before tripping of all the lines, reason of the same needs to be ascertained
- i. As per DR and flag details:
 - As per KTPS DR, Z-4 (reverse zone) started in all the 220 kV feeders but line didn't trip in 500ms.
- j. Preliminary Report received within 24hrs. DR/EL received for some of the tripped elements. Detailed report is still awaited from RRVPNL.


4. Event Description for 13th Nov 2018 event:


- a. In antecedent condition:
 - 110 MW unit-1 of KTPS was under shutdown.
 - 220 kV Kota TPS-Sakatpura ckt-2 was under shutdown
 - 220 kV Kota TPS-Kota (PG) ckt-1 was under shutdown
- b. Following element connected to 220kV bus of 400/220 kV Gorakhpur (UP) tripped:
 - 220kV Sakatpura(RVPNL)-Dyra(RVPNL)
 - 220kV Sakatpura(RVPNL)-Anta(NTPC)
 - 220kV Sakatpura(RVPNL)-RAPS-1
 - 220kV Sakatpura(RVPNL)-RAPS-2
 - 220kV Sakatpura(RVPNL)-RAPS-3
 - 220kV Sakatpura(RVPNL)-Bhanpura(MPPTCL)
 - 220kV Sakatpura(RVPNL)-KTPS(RRVUNL)-1
 - 220kV Sakatpura(RVPNL)-KTPS(RRVUNL)-3
 - 220kV Sakatpura(RVPNL)-KTPS(RRVUNL)-4
 - 220kV KTPS(RRVUNL)-KOTA(PG)-1
 - 220kV KTPS(RRVUNL)-Morak
 - 220kV KTPS(RRVUNL)-Heerapura(RVPNL)
 - 220kV KTPS(RRVUNL)-Bundi(RVPNL)
 - 220kV Sakatpura(RRVPNL)-Mandalgarh(RRVPNL)
 - 220 kV Unit #2,3,4,5 &7 at KTPS
- c. Due to bus fault at 220kV Sakatpura and delayed clearance of fault, multiple element tripping occurred at 220kV KTPS and further cascade tripping occurred at 220kV Dyra and Rana Pratap Sagar.
- d. All running units viz. Unit #2, #3, #4, #5 & #7 also tripped at KTPS except unit-6 which was on separate bus with one ckt og Kota (PG). RPS (Rana Pratap Sagar) units also tripped at the same time.
- e. Rate of change of frequency protection also operated at 220 kV Bhilwara (Raj)
- f. PMU plots of frequency and phase voltage:

PMU Plot of frequency at Kota(PG)

14:26hrs/13-Nov-18

PMU Plot of phase voltage magnitude at Kota(PG) <u>14:26hrs/13-Nov-18</u>

g. SCADA SoE data:

Time (hrs)	Station	kV	Element	Device	Status	Remarks
14:26:39,461	KOTA	220	14RAPP3	CB	disturbe	
14:26:39,482	MANDL_R	220	02KOTAPG	CB	Open	
14:26:39,547	MORAK	220	E_01(KTPS1)	CB	Open	Modak-KTPS opened from Modak end
14:26:39,713	KOTA	220	13BS	CB	Open	Bus sectionaliser at Sakatpura opened
14:26:39,725	KOTA	220	18ANTA	CB	Open	Sakatpura (end)-Anta opened
14:26:39,728	KOTA	220	12RAPP2	CB	Open	Sakatpura (end)-RAPS-2 opened
14:26:39,760	MORAK	220	E_13(T2)	CB	Close	ICT at Morak tripped
14:26:40,089	RPS	132	08KOTAS	CB	Open	RPS-Sakatpura opened from RPS end
14:26:40,111	RPS	132	07JS	CB	Open	RPS-Jawahar Sagar opened from RPS end
14:26:40,297	VATIK_R	220	04KTPS	CB	Open	Vatika-KTPS opened from Vatika end
14:26:40,435	RPS	132	01KOTAIA	CB	Open	
14:26:41,294	KTPS	220	17KOTAS4	CB	Open	KTPS-Sakatpura-4 opened from KTPS end
14:26:41,592	KTPS	11	19U5	CB	Open	Unit #5 at KTPS tripped
14:26:42,048	RPS	132	05U2	CB	Open	
14:26:42,123	RPS	132	04U1	CB	Open	Unit #1, #2, #3 & #4 at RPS tripped
14:26:42,166	RPS	132	10U4	CB	Open	01111 #1, #2, #3 & #4 at KP3 thpped
14:26:42,336	RPS	132	09U3	CB	Open	
14:26:42,526	KTPS	11	10U2	CB	Open	Unit #2 at KTPS tripped
14:26:43,043	KTPS	11	12U3	CB	Open	Unit #3 at KTPS tripped
14:26:47,643	KOTA	220	14RAPP3	CB	Close	Sakatpura (end)-RAPS-3 opened

h. AS per RRVUNL details:

	5	Tripping Report
	1. Name of Equipment :	Tripping of KSTPS Unit-2,3,4,5& 7 on grid disturbance
	2. Date of Tripping :	13-11-2018
÷	3. Time of Tripping :	14:26 Hrs
	4. Substation affected :	220 kV KTPS, Kota

5. Incidence :

At 14:26 Hrs on dated 13-11-18 , when all the KSTPS Units (except Unit-1) were running normal , suddenly Unit No.-2,3,4,5 & 7 along with various 220 kV feeders tripped and total black out was observed at KTPS, Kota.

6. Brief Summary of Event:

On investigation it was revealed that there is some fault at 220 kV Sakatpura GSS. This Bus fault was not cleared instantaneously as the Bus Bar protection provided at 220 kV GSS Sakatpura is out of service.

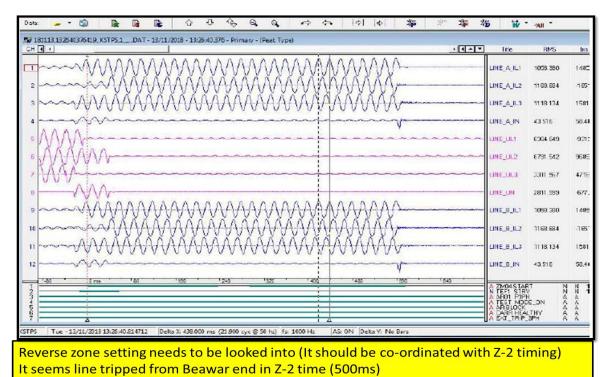
As the 220 kV Sakatpura GSS is situated at a very near to KTPS switchyard (approximate 400 Mtr) it behaves like a extended bus for 220 KV KTPS Switchyard. All the 220KV feeders from KTPS were tripped at far end except 220 kV KTPS-Sakatpura-4 which was tripped on Backup O/C protection. Due to delayed fault clearance most of the outgoing feeders were tripped on Zone-2 or Zone-3 at far end. As most of the feeders in vicinity of KTPS, Kota and 220 kV Sakatpura GSS were tripped either at KTPS end or far end on distance protection, no corridor was left behind to evacuate the power generation in the tune of 800 MW and therefore Unit-2,3 & 4 were tripped on Over speed protection of Turbine due to sudden load throw off and Unit 5 was tripped on Dead machine, while Unit-7 was tripped on Generator Backup protection during this disturbance.

Unit # 6 was not effected during this incident as same was connected to Bus # 4 which was connected to PGCIL Feeder's independently.

S. No.	Name of Element	Tripping Date	Tripping Time	Closing Date	Closing Time	Indication, KTPS end	Remark
1	110 MW ,Unit-2	13-11-18	14:26				
2	210 MW, Unit-3			13-11-18	19:33	Turbine Trip	
-	And in the other states of the		14:26	13-11-18	22:10	Turbine Trip	
3	210 MW, Unit-4		14:26	13-11-18			
4	210 MW, Unit-5	13-11-18				Turbine Trip	
		13-11-10	14:26	13-11-18	19:46	Dead	

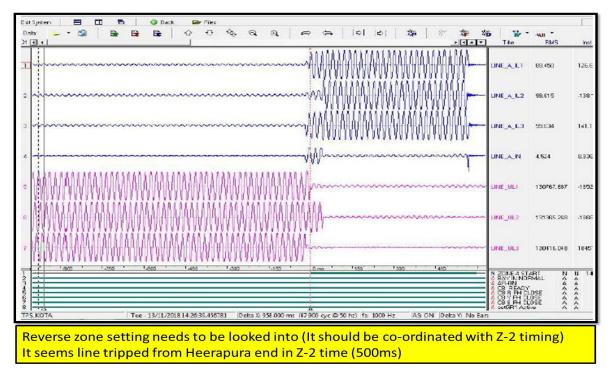
						Machine	
5	195 MW, Unit-7	13-11-18	14:26	13-11-18	17:33	Back Up Impedance	
6	195 MW, Unit-6	No tripping	2				
7 * -	220 kV KTPS- Heerpura	13-11-18	No tripping at KTPS end	13-11-18	15:05	Tripped Manually	Tripped on-Z-2 at Heerapura end
8	220 kV KTPS- Vatika	13-11-18	No tripping at KTPS end	13-11-18	16:34	Tripped Manually	Tripped on Z-3 at Vatika end
9	220 kV KTPS- Bundi	13-11-18	No tripping at KTPS end	13-11-18	20:03	Tripped Manually	Tripped on Z-3 at Bundi end
10	220 kV KTPS- Beawar	13-11-18	No tripping at KTPS end	13-11-18	19:56	Tripped Manually	Tripped on Z-2 at Bundi end
11	220 kV KTPS- Sakatpura-1	13-11-18	No tripping at KTPS end	13-11-18	15:31	Tripped Manually	No tripping at Sakatpura end
12	220 kV KTPS- Sakatpura-2	Fé	tpura GSS.				
13	220 kV KTPS- Sakatpura-3	13-11-18	No tripping at KTPS end	13-11-18	20:12	Tripped Manually	No tripping at Sakatpura end
14	220 kV KTPS- Sakatpura-4	13-11-18	14:26	13-11-18	16:29	Backup O/C , Phase-C	No tripping at Sakatpura end
15	220 kV KTPS- Morak	13-11-18	No tripping at KTPS end	13-11-18		Tripped Manually	Tripped on Z-1, at Morak end
16	220 kV KTPS- PGCIL-1	Feeder wa					
17	220 kV KTPS- PGCIL-2						

8. Restoration:

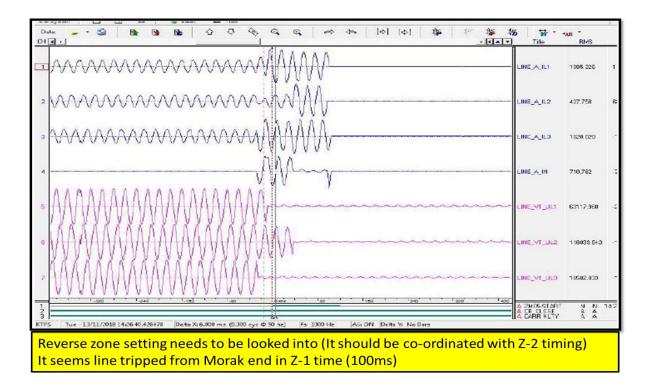

The startup supply was taken from 220 kV KTPS-Heerapura feeder at 15:05 Hrs as directed by LD. After getting startup supply, all the Station Transformers were charged and Unit light up activities initiated.

9. Analysis:

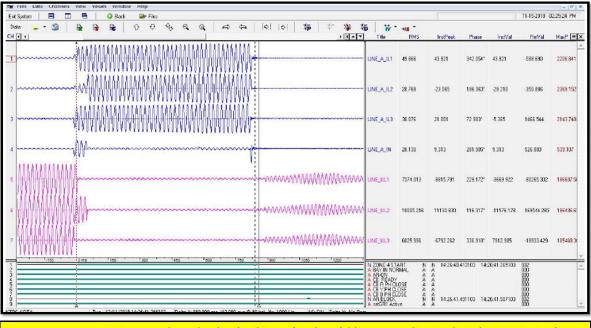
The delayed fault clearance at 220 kV Sakatpura GSS resulted in tripping of various 220 kV feeders emanating from KTPS, Kota on Zone-2 or Zone-3 distance protection at far end stations. The lack of Bus Bar protection at 220 kV Sakatpura GSS cause of this incidence in which loss of Generation in the tune of almost 800 MW.


11. Remedial Measures:

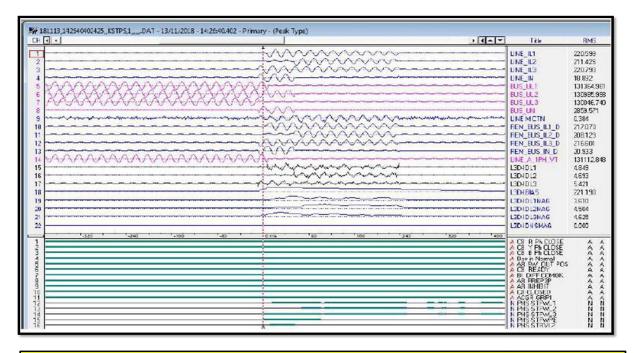
- (a) Unit # 6 was connected to PGCIL feeder's on dated 27/10/2018 same was survived during this event.
- (b) Now Unit # 7 also connected to PGCIL feeder's on dated 13/11/2018.
- (c) Relay setting of KSTPS-Sakatpura Feeder No. 1 to 4 setting also reduced at KSTPS end. Over current TMS change from 0.1 to 0.05 and for earthfault TMS reduced to 0.15 to 0.05.
- (d) The provision of Bus Bar relay at 220 kV Sakatpura GSS is the utmost requirement and this will save the Generation at KTPS, Kota in case of Bus Faults occurred.



DR of 220kV KTPS (end)-Beawar


DR of 220kV KTPS (end)-Heerapura

DR of 220kV KTPS (end)-Morak



DR of 220kV KTPS (end)-Vatika

Reverse zone setting needs to be looked into (It should be co-ordinated with Z-2 timing) It seems line tripped from Vatika end in Z-2 time (500ms)

DR of 220kV KTPS (end)-Sakatpura 1

Differential protection didn't operate. Line tripped from Sakatpura end on O/C E/F protection

i. AS per RRVPNL details:

		Preli	minary F	Report	_		
e & Time of ever oduction of Ever al Loss of Load: - ather	<u>nt</u> : -		11.2018 at 14.7 Itiple trippings		S Kota &Dyra		
Supply	of 220 KV GSS, 220	Kv Dyra & K	TPS disturbed	d at 14.24 Hr:	s on dated 13.11.	2018 due to ca	ascade tripping
	KV GSS Kota (S) i.e. 2						
220 Kv	Kota(S) - RAPPB , 2	20 Kota(S)- I	Mandalgarh . 1	Fripping deta	ils awaited.		
	-RAPPA I. Jue to this tripping K	<u>P</u>	relimina	ry Repo		3	11:201B
roduction of Eve	<u>nt</u> : -		.11.2018 at 14 ultiple tripping		SS Kota		
al Loss of Load: neration Load wather Supply	<u>nt</u> : -	: Mu : 25 : 62	ultiple tripping OMW OMW S disturbed at 14.24	gs at 220 KV G	2018 due to cascade trip		Kota (S) as follows.
al Loss of Load: neration Load ather	<u>nt</u> :-	: Mu : 25 : 62	ultiple tripping OMW OMW	gs at 220 KV G			Remark
al Loss of Load: neration Load wather Supply	nt: -	: Mi : 25 : 62 : Generation at KTP	Ultiple tripping OMW OMW S disturbed at 14.24 Tripping	gs at 220 KV G Hrs on dated 13.11. Closing Time	2018 due to cascade trip Relay In	dication	
al Loss of Load: neration Load wather Supply	nt: - of 220 KV GSS Kota(S) & C Name of Line 220KV SAKATPURA-	: Mr : 25 : 62 : Jeneration at KTPS Date	Altiple tripping OMW OMW S disturbed at 14.24 Tripping Time Hrss. 14:24Hrs	gs at 220 KV G Hrs on dated 13.11. Closing Time Hrs. 15:46 Hrs	2018 due to cascade trip Relay In At Sakatpura end Main 1-zone4,dist 1.7 km ,-186 A 186	dication At Other end phase A,Zone2,dist.59.1	Remark CLOSE AFTER CLEARANCÉ BY 220 KV GSS Anta & , Charging code
al Loss of Load: neration Load wather Supply	nt: - of 220 KV GSS Kota(S) & C Name of Line 220KV SAKATPURA- ANTA (NTPC) 220 KV SAKATPURA- RAPP(A) CIRCUIT	: Mr : 25 : 62 : Generation at KTPS Date 13.11.2018	S disturbed at 14.24 Tripping Time Hrss. 14:24Hrs dt.13.11.2018	gs at 220 KV G Hrs on dated 13.11. Closing Time Hrs. 15:46 Hrs dt.13.11.2018 15:11 HRS	2018 due to cascade trip Relay In At Sakatpura end Main 1-zone4,dist - 1.7 km ,-186 A 186 B ,R,Y,B phase Main 1-zone4,dist - 1.7 km ,-Main-2 186 A 186 B	dication At Other end phase A,Zone2,dist.59.1 3km M/T ,NO Tripping , No	Remark CLOSE AFTER CLEARANCÉ BY 220 KV GSS Anta & , Charging code NR-1235 CLOSE AFTER CLEARANCE BY RAPP Charging
al Loss of Load: neration Load wather Supply Name of GSS 220 kv Gss sakatpura	nt: - of 220 KV GSS Kota(S) & C Name of Line 220 KV SAKATPURA- ANTA (NTPC) 220 KV SAKATPURA- RAPP(A) CIRCUIT NO.2 220 KV SAKATPURA- RAPP(A) CIRCUIT	: Mit : 25 : 62 : : Jeneration at KTP Date 13.11.2018 13.11.2018	Altiple tripping OMW OMW S disturbed at 14.24 Tripping Time Hrss 14:24Hrs dt.13.11.2018 14:24Hrs dt.13.11.2018	gs at 220 KV G Hrs on dated 13.11. Closing Time Hrs. 15:46 Hrs dt.13.11.2018 15:11 HRS dt.13.11.2018	2018 due to cascade trip Relay In At Sakatpura end Main 1-zone4,dist 1.7 km ,-186 A 186 B ,R,Y,B phase Main 1-zone4,dist 1.7 km ,-Main-2 186 A 186 B ,R,Y,B phase NO Tripping , No	dication At Other end phase A.Zone2,dist.59.1 3km M/T ,NO Tripping , No indication CB Tripped with	Remark CLOSE AFTER CLEARANCÉ BY 220 KV GSS Anta & , Charging code NR-1235 CLOSE AFTER CLEARANCE BY RAPP Charging

Name of GSS	Name of Line	ine Date		Tripping Closing Time Time Hrs. Hrs.		Relay Indication		
	220 KV SAKATPURA- Mandalgad	13.11.2018	14:24Hrs dt.13.11.20 18	14:40Hrs dt.13.11.2018	NO Tripping , No indication	A,B,C Phase zone,2 fault loc.86.2km		
	220KV SAKATPURA- KTPS NO1	13.11.2018	14:24Hrs dt.13.11.20 18	15:30Hrs dt.13.11.2018	NO Tripping , No indication			
	220KV SAKATPURA- KTPS NO3	13.11.2018	14:24Hrs dt.13.11.20 18	15:32Hrs dt.13.11.2018	NO Tripping , No indication			
	220KV SAKATPURA- KTPS NO4	13.11.2018	14:24Hrs dt.13.11.20 18	15:40Hrs dt.13.11.2018	NO Tripping , No indication			
220 kv Gss sakatpura kota	220/132 KV ,160 MVA TR1	13.11.2018	14:24Hrs dt.13.11.20 18	14:59Hrs dt.13.11.2018	NO Tripping , No indication			
	100 MVA TR2	13.11.2018	14:24Hrs dt.13.11.20 18	14:49Hrs dt.13.11.2018	NO Tripping , No indication	- 20 - 200	international de la companya de la compa	
	100 MVA TR3	13.11.2018	14:24Hrs dt.13.11.20 18	14:59Hrs dt.13.11.2018	NO Tripping , No indication		uteren (
	100 MVA TR4	13.11.2018	14:24Hrs dt.13.11.20 18	14:49Hrs dt.13.11.2018	NO Tripping , No indication			
	All, 132 KV feeders, Supply restored	13.11.2018		14:49Hrs dt.13.11.2018	NO Tripping , No indication			

Supply of 220 Kv Kota(S)-& Dyra restored at 14.44 Hrs from 220 Kv Kota (S) –Mandalgarh & 220 Kv

Kota(S) -RAPPA I.

Due to these trippings at 220 kv Gss sakatpura kota, the KTPS unit No. 2,3,4,5 & 7 tripped at 14.24 Hrs/13.11.2018. Unit No.6 is running and unit No.1 is under shutdown.

S. No	I Sub- I	Name of Feeder	Modal & make of relay	Frequency	Date of operation of relay	operation	Approved load relief (MW) from the feeder	(MW) obtained	Total Load Relief at any particular instant (in MW)	Affected Area	Whether power flow it was monitored in SLDC through SCADA	tripping in SCADA	Total impact at state level in SCADA (MW change in drawl of the state)
							MW	MW			Yes/No	Yes/No	MW
	220 KV	132KV GSS Devgarh+ Karera		F = 49.80 Hz			26	26		Karera, Devgarh	No	No	
1	1 1	132KV GSS Gangapur+ Raipur	MICOM P941	Df/dt .212.7 m Hz/sec	13.11. 2018	14:27	23	23	49	Gangapur & Raipur	No	No	

Rate of Change of Frequency (RoCoF) operation at 220 kV Bhilwara station

- j. As per PMU & DR data:
 - As per PMU, maximum dip in all three phase.
 - Fault Clearance time: **1160ms**

- 220 kV Morak-KTPS ckt tripped in Z-1 from Morak end.
- 220 kV Heerapura-KTPS, Vatika-KTPS and Bundi-KTPS ckt tripped in Z-2 from remote end of KTPS.
- As per KTPS DR, Z-4 (reverse zone) started in all the 220 kV feeders but line didn't trip in 500ms
- Preliminary Report received within 24hrs. DR/EL received for some of the tripped elements. Detailed report is still awaited from RRVPNL.

Points for Discussion:

- 1. Event on 20th Oct 2018:
 - a. Exact location of fault and nature of fault.
 - b. Reason of delayed clearance of fault.
 - c. Failure of which primary and back up protection led to delayed clearance of fault.
 - d. Exact sequence of events in view of cause of event; protection operation/non-operation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
 - e. Back up earth fault setting of 220 kV Bus Coupler-1 needs to be reviewed.
 - f. Sequence of tripping needs to be reported and explained. (Time stamped data for the tripping didn't receive)
 - g. Tripping of all station transformer (220/6.6kV) on back earth fault protection needs to be reviewed in accordance with current & time delay setting.
 - h. Reason of tripping of unit-2 within 200ms of fault occurrence before tripping of all the lines from Kota TPS.
 - i. Reverse zone (Z-4 setting) to be co-ordinated with Z-2 timing as per Rama Krishna committee report, same needs to be modified at Kota TPS.
 - j. Arrangement of station auxiliary supply and its back up at 220 kV Kota TPS to be shared. Also reason of tripping of all running units needs to be explained.
 - k. Availability of time synchronized SCADA SoE to be checked and corrected.
 - i. Tripping of units other than 2, 3 & 5
 - ii. Tripping of 220 kV feeders from remote end of KTPS

- I. Detailed report, remedial measures report and complete DR/EL (cfg, dat file) needs to be submitted by RRVPNL.
- 2. <u>Event on 13th Nov 2018:</u>
 - a. Exact location of fault and nature of fault.
 - b. Reason of delayed clearance of fault.
 - c. Failure of which primary and back up protection led to delayed clearance of fault.
 - d. Exact sequence of events in view of cause of event; protection operation/non-operation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared.
 - e. Status of availability of bus bar protection at 220kV Kota (Sakatpura) having four number of bus bars to be shared.
 - f. As approved in 25th PSC meeting, temporary arrangement for bus bar protection, could be put in place till actual bus bar protection is available. Status of the same to be apprised. Reason of delayed clearance of fault if arrangement was there?
 - g. Sensitive distance protection setting of 220 kV Morak (end)-KTPS ckt to be reviewed.
 - h. Reverse zone (Z-4 setting) to be co-ordinated with Z-2 timing as per Rama Krishna committee report, same needs to be modified at Kota TPS.
 - i. Rate of change of frequency protection at 220 kV Bhilwara (Raj) needs to be looked into.
 - j. Availability of time synchronized SCADA SoE to be checked and corrected.
 - i. Tripping of units other than 2, 3 & 5
 - ii. Tripping of 220 kV feeders from remote end of KTPS
 - k. Detailed report, remedial measures report and complete DR/EL (cfg, dat file) needs to be submitted by RRVPNL.

Discussion during the meeting for 20th Oct 2018 event:

Rajasthan representative informed about the tripping, after completing the work on 220 kV Bus-3 & 5, RRVUNL was in process of restoring these buses through bus coupler-2 & 3, section-1 was already charged after closing of bus coupler.220 kV Sakatpura ckt-3 was taken on bus-3. When 220 kV Kota TPS-Morak ckt was discharged from 220 kV Bus-2 after charging from 220 kV bus-3, bus coupler-2 tripped on back up earth fault protection and bus coupler-3 also tripped due to flashover on one of the isolator. To attend the flashover of bus isolator when 220kV Kota TPS-Morak ckt again taken on bus coupler-2 and connection on bus coupler-3

was taken out, heavy spark occurred on the bus isolator connected to bus-2 and created bus fault. At the same time 220 kV bus coupler-1 tripped and all the station transformer also tripped. Bus isolator fault occurred only in case of switching of 220 kV Kota TPS-Morak ckt from one bus to other bus. RRVUNL decided to do bus switching for 220 kV Kota TPS-Morak ckt in offline mode only.

- 220 kV bus bar protection was out of service during changeover of feeder from one bus to other bus (general practice in Kota TPS). At the time of incident 220 kV bus bar protection was manually taken out of service.
- Rajasthan representative further informed that at that moment what current flow through the bus coupler is not known due to conventional relays for bus coupler.
- Rajasthan representative informed that, some of the auxiliary supply fed through UAT and some through station auxiliary transformer. Redundancy is not available for station auxiliary transformer.
- NRLDC suggested RRVUNL to check the station event logger details and prepare the complete sequence of event in time stamped (in ms) manner.
- Delhi representative informed that in DTL also such type of isolator failure observed during switching of the feeder from one bus to other bus (for example at Mandola station). Failure occurs due to unbalance current flowing and delay in closing/ opening of the isolator phases and it further resulted into tripping of bus coupler on backup earth fault protection. Due to increased load on the station, current flow through bus coupler reached more than 20A which is higher than the setting value of backup earth fault setting. Relay pickup setting shall be increased from exiting current setting.
- UPPTCL representative also informed that bus bar protection was manually taken out of service at selected location where bus bar protection operated due to auxiliary contact issue. (For example at Bareilly (UP))
- NRLDC raised concern about outage of bus bar protection during changeover of feeder from one bus to other bus. Issue needs to be catered instead of outage of bus bar protection

Discussion during the meeting for 13th Nov 2018 event:

 NRLDC raised concern about complete outage of Kota TPS and Sakatpura station due to non-healthy bus bar protection at 220 kV Sakatpura station and suggested RRVPNL to ensure the healthiness of bus bar protection as soon as possible.

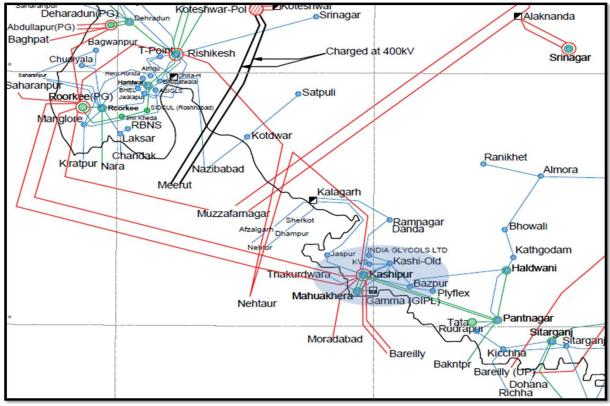
- RRVUNL representative informed that proposal was sent to RRVPNL to reduce the TMS setting of backup over current earth fault and distance protection may be implemented along with differential protection in 220 kV Kota TPS-Sakatpura ckt-1,2,3&4. Distance protection setting may be 5kM distance with 160ms time delay for zone-1.
- RRVPNL representative informed that these four ckts are very important for load management. If there is any delay in fault clearance from Kota TPS end resulted into tripping of all four ckts from Kota TPS to Sakatpura and it further resulted into load load in Sakatpura area.
- RRVUNL representative further informed that, at present two units are radially fed supply towards 400/220 kV Kota (PG) so power flow on 220 kV Kota TPS-Sakatpura lines are almost 100Ampere per ckt. In case of tripping of 220 kV Kota TPS-Sakatpura ckts, Kota TPS generation and Sakatpura load shall not be disturbed.
- NRPC suggested RRVPNL to discuss the remedial measures of implementing distance zone setting (Z-1 setting with 5kM distance and 160ms time delay) in 220 kV Kota TPS-Sakatpura ckts along with differential protection till the time of implementation healthy bus bar protection at 220 kV Sakatpura station.
- Reverse zone setting in all 220 kV feeders at 220 kV Sakatpura station is 160ms and bus coupler setting is 100ms. Bus coupler earth fault setting time delay is 100ms but time delay for back up over current setting is 500ms. In this case as three phase balanced fault so earth fault protection was not picked up and resulted into delayed operation of bus coupler after 500ms on back up over current setting.

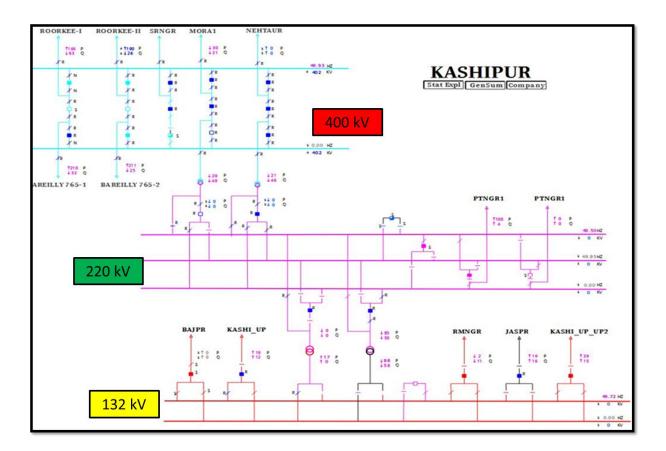
G. Multiple element tripping at 400/220 kV Kashipur at 13:28hrs of 25th Oct 2018

Event category: GD-1 Generation loss: 180 MW (As per PTCUL report) Loss of load: 225 MW (As per PTCUL report) Energy Unserved: 0.22 MU (PTCUL may confirm)

Description	Reference	Fault Info	Remarks
Fault Clearance Time	PMU data	1640ms	
Phase of the fault	PMU data	Y B-N fault	

Data Summary received/available at NRLDC:


Description	Utilities	Status	Remarks
Availability of	Uttarakhand	Not Available	
Digital Data (SCADA Data)	Uttar Pradesh	Available (Partial)	
DR/EL	Uttarakhand	Received	After 24hrs
DRYEL	Uttar Pradesh	Not Received	
Preliminary	Uttarakhand	Received	Within 24hrs
Report	Uttar Pradesh	Not Received	
Detailed Report	Uttarakhand	Not Received	


Description	Clauses	Utility	Remarks
Violation of Clauses	1.IEGC5.2.r& 5.9.6.c(VI)2.CEA(Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1,6.2)3.43.4.A & 43.4.D of CEA Technical Standard for Construction of 	Uttarakhand	 Detailed Report yet to be received DR/EL received after 24hrs Adequately Sectionalized and graded protective relaying system Incorrect/mis-operation unwanted operation of Protection system Delayed Clearance of Fault

Violation of Clauses	1.IEGC 5.2.r & 5.9.6.c (VI)2.CEA (Technical standards for connectivity to the Grid)Regulation, 2007: Schedule Part 1. (6.1,6.2)3.43.4.A & 43.4.D of CEA TechnicalStandard for Construction of Electrical Plants and Electric Lines;CEA (Technical standards for connectivity to the Grid)Regulation, 2007: Schedule Part 1. (6.1,6.2,6.3,6.4)CEA (Technical standard for 	Uttar	 Preliminary Report, DR/EL and detailed Report yet to be received Adequately Sectionalized and graded protective relaying system Incorrect/mis-operation unwanted operation of Protection system
-------------------------	---	-------	---

Based on above information description of the events is:

1. Connectivity Diagram and SLD of 400 kV Kashipur:

- 400 kV Kashipur (PTCUL) is connected with Roorkee (PG) D/C, Bareilly (PG) D/C, Moradabad S/C and Nehtaur S/C. It also has two 315MVA 400/220 kV ICT. It has one and half breaker scheme at 400 kV level and DMT (double main transfer breaker) scheme at 220kV level.
- 3. 220 kV Main Bus-1 and 160MVA transformer-1 was in shut down for maintenance.
- 4. At 14:28hrs isolator 201-89B (160MVA T/F-1 Main Bus-2 isolator) try to close for returning the shutdown of 160MVA T/F-1 but Y&B phases isolators got stuck mechanically and created a spark on the jaw blades of Y&B phase which results in completely burn of mentioned isolator phases and earthed 220kV Main Bus-2 through insulators which creates a Bus fault at 220 kV side. This resulted into tripping of both 315MVA T/F-1&2, 160MVA T/F-2, All 220 kV feeders and also 400 kV Nehtaur and Moradabad lines.
- 5. This resulted into total blackout at 132 kV S/S Kashipur, Bazpur, Jaspur, Ramgnagar and 220 kV Mahuakheraganj station.
- 6. Name of the tripped elements are as below:
 - 400kV Kashipur (UTT)-Nehtaur 400 (UP)
 - 400kV Kashipur(UTT)-Moradabad(UP)
 - 315 MVA ICT 1 at 400/220kV Kashipur(UTT)

- 315 MVA ICT 2 at 400/220kV Kashipur(UTT)
- 160 MVA ICT 2 at 220/132kV Kashipur(UTT)
- 400kV Kashipur (UTT)-Pantnagar(UTT) ckt-1
- 400kV Kashipur (UTT)-Pantnagar(UTT) ckt-2

7. As per PTCUL Report:

Time and date of event- 25-10-2018 at 13:28Hrs (as per GPS time)

Location- 400KV Substation Kashipur.

Description and cause of event- 220kV Main Bus-1 and 160MVA T/F-1 was in shut down for maintenance. At 14:28Hrs Isolator 201-89B (160MVA T/F-1 Main Bus-2 Isolator) try to close for returning the shutdown of 160MVA T/F-1 but Y and B Phases of isolators got stuck mechanically and created a spark on the jaw blades of Y and B Phase which results in completely burn of mentioned isolator phases and earthed 220kV Main Bus-2 through insulators which creates a Bus fault at 220kV side. This resulted into tripping of Both 315MVA T/F-1&2, 160MVA T/F-2, All 220kV feeders and also 400kV Nehtaur and Moradabad Lines.

Generation Loss- 182 MW (As per Previous Hour reading)

Loss of load - 225 MW (As per Previous Hour reading)

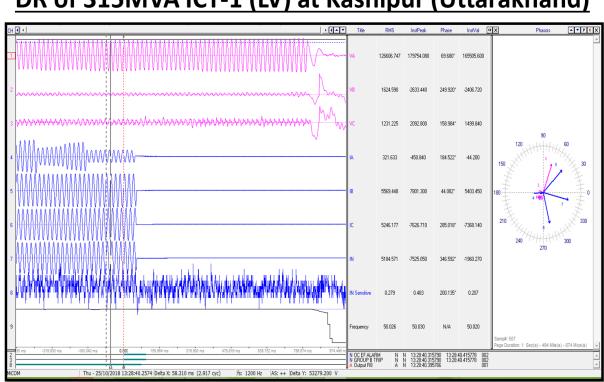
Analysis-

- At 13:28Hrs, During the closing of isolator, Y and B Phases of isolator got stuck and created a spark between the blades of isolator.
- 2- This result into failure of insulator of isolator and earthed 220kV Main Bus-2 through Bus Post Insulators. This resulted into a 220kV Bus Fault.
- 3- This fault current was fed through all Transformers, all 220kV and 400kV Lines, Which results into tripping of the following feeders and Transformers :
 - a) 400kV Moradabad Line at Moradabad end
 - b) 400kV Nehtaur Line at both ends
 - c) Both 315MVA T/F-1&2
 - d) Both 160MVA T/F-2
 - e) 220kV SEPL, Mahuakheraganj, Pantnagar-1&2 Circuits, all tripped at other ends.
- 4- This results into total blackout at 132kV Substation Kashipur, Bazpur, Jaspur, Ramnagar and 220kV S/S Mahuakheraganj.

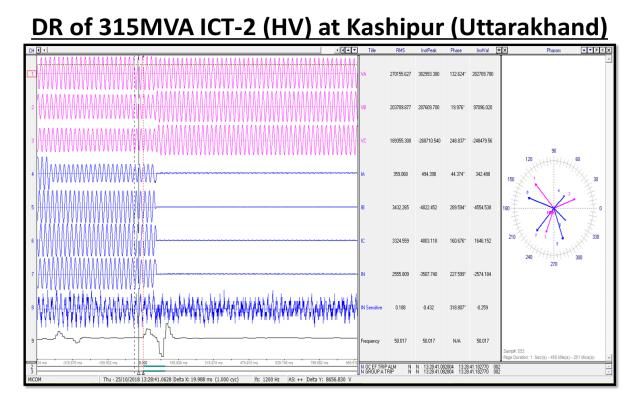
Action Taken-

1-220kV Main Bus-2 shutdown taken for replacing burnt isolator and all the 220kV Supply was resumed through 220kV Main Bus-1.

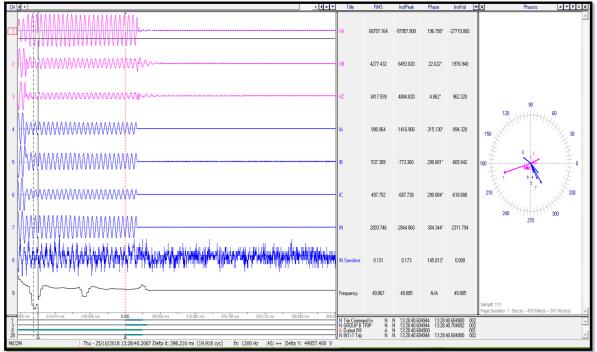
2-At 14:25Hrs Both 315MVA T/F-1&2 charged.

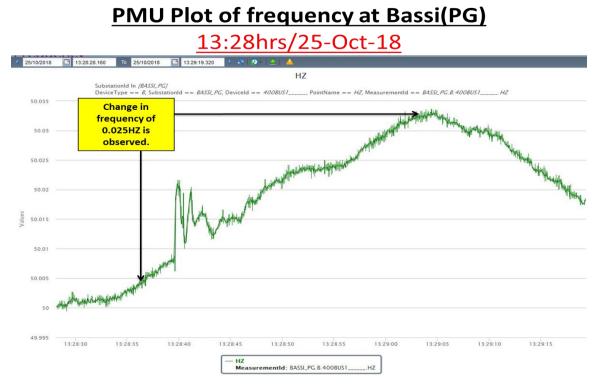

3-220kV Pantnagar closed at 14:44Hrs, 220kV Pantnagar closed at 14:45Hrs,220kV Mahuakheraganj closed at 14:46HRs and 220kV SEPL closed at 14:51HRs.

4-160MVA T/F-2 charged at 14:53HRs.

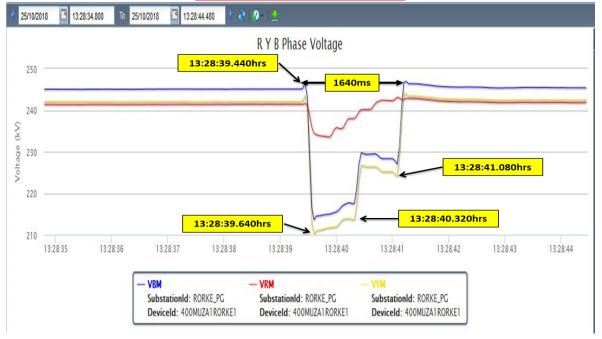

5-All 132kV feeders was closed one by one at 15:01HRs.

6-160MVA T/F-1 was closed through 220kV TBC at 15:54HRS.

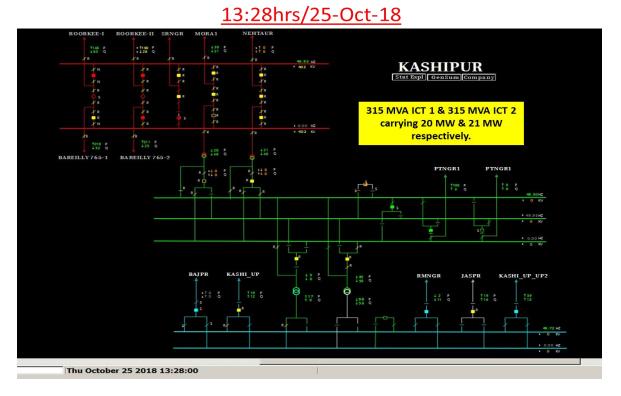

- W.
- 8. As per DR details:


DR of 315MVA ICT-1 (LV) at Kashipur (Uttarakhand)

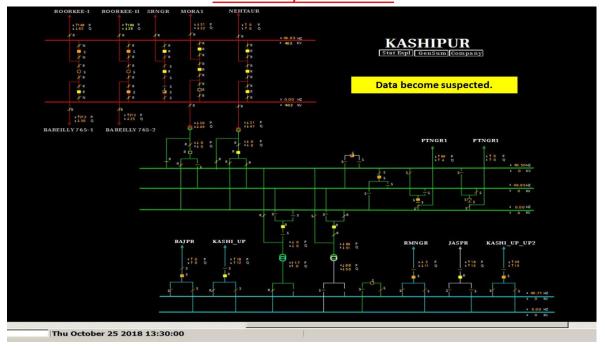
DR of 160MVA ICT-2 at Kashipur (Uttarakhand)



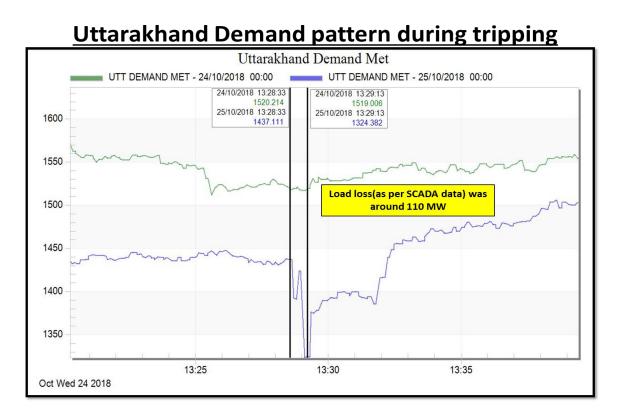
9. PMU plots:


PMU Plot of phase voltage magnitude at Roorkee(PG)

13:28hrs/25-Oct-18



10. As per SCADA SLD:


SLD of 400/220kV Kashipur(UTT) before the incident

SLD of 400/220kV Kashipur(UTT) after the incident 13:30hrs/25-Oct-18

11. As per SCADA data plot:

12. As per SCADA SoE:

Time (in ms)	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status
13:28:40,503	MORA1_UP	400kV	F_02(KASHI)	СВ	Open
13:29:58,453	NHTR1_U	400kV	09KASHI	СВ	Open
13:29:58,453	NHTR1_U	400kV	08T2KSHI	СВ	Open

13. As per PMU, SCADA & DR data:

- As per PMU, maximum dip in Y&B-phase.
- Fault Clearance time: 1640ms
- SoE captured, it seems time synch error. (Tripping time captured in SCADA SoE is 800ms before the actual fault time (PMU reference time)
- It seems 400/220 kV ICTs (ICT-1 & 2) of Kashipur tripped on back up protection

- 14. Preliminary Report, DR/EL has been received from Uttarakhand but detailed report is still awaited.
- 15. Preliminary Report, DR/EL is still awaited from UPPTCL.

Points for Discussion:

- 1. Exact sequence of events in view of cause of event; protection operation/non-operation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared
- 2. Exact location of fault and nature of fault.
- 3. Sequence of tripping needs to be reported and explained.
- 4. Reason of delayed clearance of fault.
- 5. Delayed clearance of fault in case of operation of bus bar protection for both 220 kV bus at 400/220 kV Kashipur (PTCUL) needs to be relooked.
- 6. Delayed clearance of fault more than 1640ms in case of operation of instantaneous bus bar protection operation also to be checked.
- 7. Healthiness of 220 kV bus bar protection of 400/220 kV Kashipur (PTCUL) needs to be ensured.
- 8. Availability of time synchronized SCADA SoE to be checked and corrected.
- Reason of tripping of 400 kV Moradabad-Kashipur and Nehtaur-Kashipur ckts and its protection co-ordination with back up protection setting of 400/220 kV ICTs at Kashipur (PTCUL).
- 10. Detailed report, remedial measures report and supporting DR/EL needs to be submitted by UPPTCL.

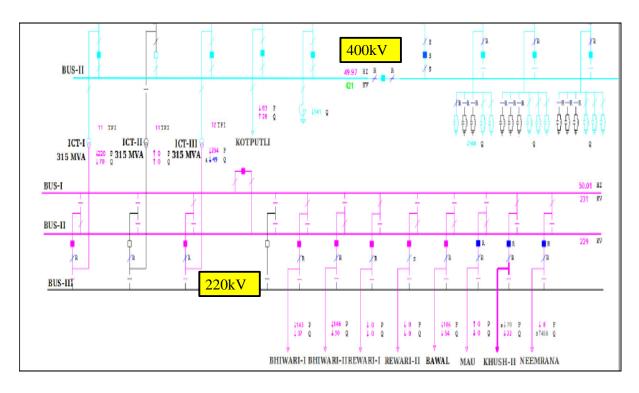
NRPC raised concern about absence of concerned person from constituents and requested all the STU/SLDC to share the feedback with concerned utilities.

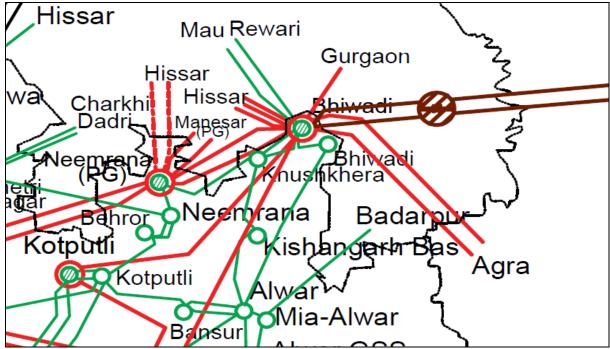
H. Multiple Element tripping at 400/220kV Bhiwadi Station at 08:14hrs of 24th Nov 2018

Event category: GI-2 Generation loss: Nil MW (Rajasthan may confirm) Loss of load: Nil MW (Rajasthan may confirm) Energy load: Nil MU (Rajasthan may confirm)

Data Summary received/available at NRLDC:

Description	Fault Info	Remarks

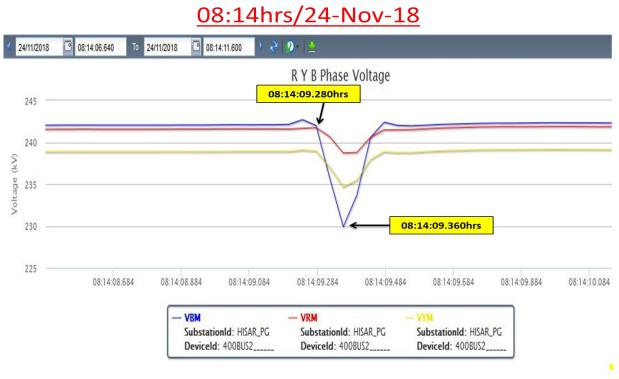

Fault Clearance Time	120ms	As per PMU data
Phase of the fault	Maximum dip in Blue-phase	As per PMU data


Description	Utilities	Present Status	Remarks
Availability of Digital Data (SCADA Data)		Partially Received	Time Synch error
	POWERGRID	Received	
DR/ EL	Rajasthan	Not received	
Droliminary Doport	POWERGRID	Received	
Preliminary Report	Rajasthan	Not received	
Detailed Report	POWERGRID	Not received	

Description	Clauses	Utility	Remarks
Violation of Clauses	1. IEGC 5.2.r & 5.9.6.c (VI) 2. CEA grid Standard 15.3 3. CEA (Technical standards for connectivity to the Grid) Regulation, 2007-6. 4.d 4. 43.4.A of CEA Technical Standard for Construction of Electrical Plants and Electric Lines; 5. CEA (Technical standards for connectivity to the Grid) Regulation, 2007: Schedule Part 1. (6.1, 6.2, 6.3)	POWERGRID	 Detailed rpeort yet to be received Adequately Sectionalized and graded protective relaying system
Violation of Clauses	1. IEGC 5.2.r & 5.9.6.c (VI) 2. CEA grid Standard 15.3	Rajasthan	1. Preliminary Report, DR/EL yet to be received

Based on above information description of the events is:

1. Single Line Diagram and connectivity diagram of Bhiwadi (PG):


 220kV Bhiwadi (PG) is connected with Rewari D/C, Bhiwadi (Raj) D/C, Mau S/C, Kushkhera S/C, Bawal S/C and Neemrana S/C. It also has three 315MVA 400/220 kV ICTs. It has DMT (double main transfer) scheme at 220kV and one and half breaker scheme at 400 kV level.

- 3. B-N fault occurred in 220kV Bhiwadi(PG)-Kushkhera ckt. This ckt tripped without A/R at both end.
- 4. At the same time 220 kV bus bar protection for 220 kV bus-2 of Bhiwadi (PG) operated.
- 5. It resulted into multiple element tripping in the system and all the 220 kV feeders connected to 220 kV bus-2 of Bhiwadi (PG) tripped along with 400/220 kV 315MVA ICT-1 & 3.
- 6. DR details of different element tripping has been received but DR details of 220 kV bus bar protection is still awaited
- 7. Name of the tripped element:
 - 220kV Bhiwadi(PG)-Kushkhera(RVPNL) ckt-2
 - 220kV Bhiwadi(PG)-Bhiwadi(RVPNL) ckt-2
 - 220kV Bhiwadi(PG)-Mau(HVPNL)
 - 315 MVA ICT 1 at 400/220kV Bhiwadi(PG)
 - 315 MVA ICT 3 at 400/220kV Bhiwadi(PG)
 - 220kV Bhiwadi(PG)-Rewari(HVPNL) ckt-1
 - 220kV Bhiwadi(PG)-Rewari(HVPNL) ckt-2
 - 220kV Bus 2 at 400/220kV Bhiwadi(PG)
- 8. It seems, in antecedent condition 220 kV Bhiwadi-Mau ckt & Bhiwadi-Rewari ckt-2 was under outage from remote end of Bhiwadi (PG).
- 9. PMU plots:

PMU Plot of frequency at Bassi(PG)

08:14hrs/24-Nov-18

PMU Plot of phase voltage magnitude at Hisar(PG)

10. As per PMU data:

• B-N fault occurred at 08:14:09.280hrs and cleared in 120ms.

Time	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
08:14:09:423	KHUSHKEDA	220kV	E_02(BHIWA-2)	Circuit Breaker	disturbe	
08:14:09:423	KHUSHKEDA	220kV	E_02(BHIWA-2)	Circuit Breaker	Open	Main CB of 220kV Bhiwadi(PG)- Kushkhera(RVPNL) ckt-2 opens.
08:14:09:405	BHIWADI	220kV	03T3	Circuit Breaker	Open	220kV Side Main CB of 315 MVA ICT 3 at Bhiwadi(PG) opens.
08:14:10:358	BHIWADI	400kV	3T1	Circuit Breaker	Open	400kV Side Main CB of 315 MVA ICT 1 at Bhiwadi(PG) opens.
08:14:10:359	BHIWADI	220kV	01T1	Circuit Breaker	Open	220kV Side Main CB of 315 MVA ICT 1 at Bhiwadi(PG) opens.
08:14:10:359	BHIWADI	400kV	2T1AG1	Circuit Breaker	Open	400kV Side Tie CB of 315 MVA ICT 1 at Bhiwadi(PG) opens.
08:14:10:359	BHIWADI	220kV	09RWARI2	Circuit Breaker	Open	Main CB of 220kV Bhiwadi(PG)- Rewari(HVPNL) ckt-2 opens.
08:14:10:360	BHIWADI	220kV	07BHIWR2	Circuit Breaker	Open	Main CB of 220kV Bhiwadi(PG)- Bhiwadi(RVPNL) ckt-2 opens.
08:14:10:654	BHIWADI	220kV	04MBC	Circuit Breaker	Open	220kV Side Bus coupler opens.

11. SCADA data and SoE:

12. As per SCADA SoE:

a. As per SCADA SoE, feeders at Bhiwadi tripped at different timings (SCADA SoE time needs to be checked).

13. As per POWERGRID details:

220kV Bhiwadi(PG)-Khushkhera(R) tripped at 08:14:09 Hrs in Zone-1 from Bhiwandi(PG) end on B -N fault(Jumper snap at location no. 20 of 220kV PG Bhiwadi- Khuskhera line as reported by RVPNL person). During fault detected in 220kV Bhiwadi(PG)-Khushkhera(R), Bus Bar-2 Protection operated and following feeders connected to Bus-2 along with Bus Coupler tripped immediately .

a) 220KV ICT-1

b) 220KV ICT-3 (220kV side CB)

c) 220KV Bhiwadi-2

d) 220KV Rewari-2

e) 220KV Mau

Charging Sequence:

1. 220KV Bus-2 & Bus coupler

2. 315MVA ICT-1

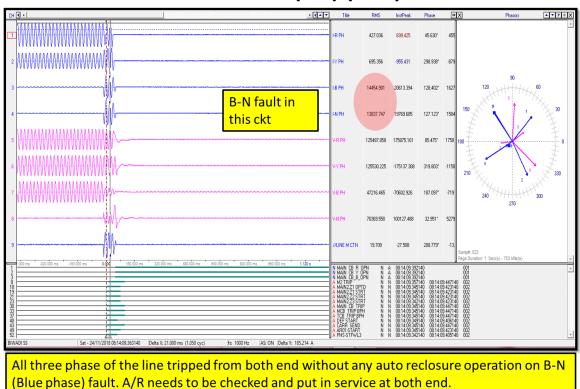
- 3. 315MVA ICT-3
- 4. 220KV Rewari-2

5. 220KV Mau line

6. 220KV Bhiwadi-2 line

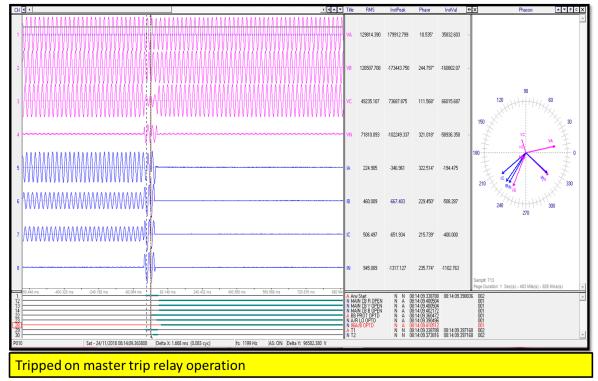
7. 220KV Khushkhera line RVPNL Restored at 09:18 Hrs

Restored at 09:18 Hrs


Restored at 09:43 Hrs

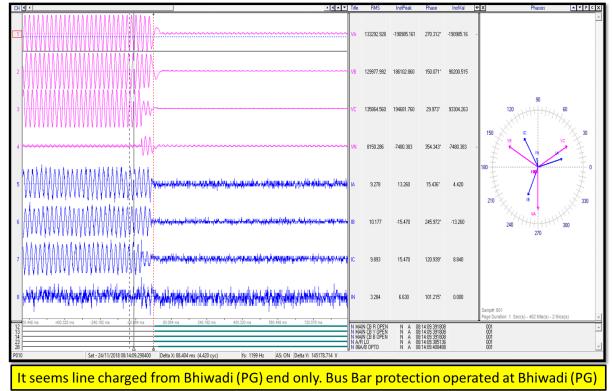
Restored at 09:45 Hrs

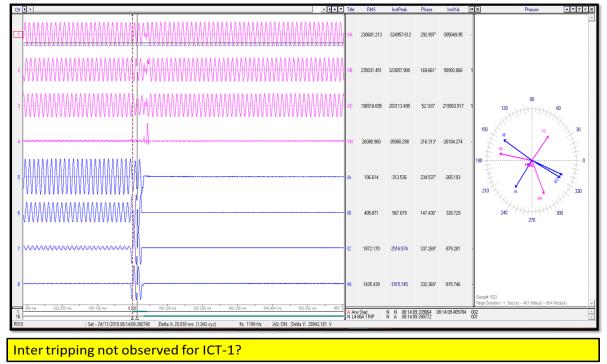
Restored at 10:00 Hrs


Restored at 09:55 Hrs

Under shutdown by

DR of 220 kV Bhiwadi (PG) (end)-Kushkhera


DR of 220 kV Bhiwadi (PG) (end)-Bhiwadi (Raj) ckt-2


DR of 220 kV Bhiwadi (PG) (end)-Mau

DR of 220 kV Bhiwadi (PG) (end)-Rewari ckt-2

DR of 315MVA 400/220 kV ICT-3 at Bhiwadi (PG)

СН		• • • •	Title	RMS	InstPeak	Phase	InstVal 🛛	Phasors
1		AAAAA	IA-1	60.286	-88.391	178.965*	-22.098	<u> </u>
2			IB-1	179.092	-226.503	190.240*	-46.958	
3			IC-1	445.782	906.011	32.631°	488.915	
4	may music press of methodes and both for all the another sign in the principal services in the principal server by the principal services by the pri	Andrew Market	IN-1	3.566	2.762	76.831°	2.762	
5			IA-3	437.919	649.676	135.455*	433.118	
6	www.www.www.www.		IB-3	415.025	729.229	4.137*	26.517	90 120 x x 4++++ ((60
7	/ill		IC-3	3218.457	-5396.293	199.286*	-1825.282	XHHHHHHH
8	engelagi anda sambu kanan gingin gingi pangi pangi pangi pangi pangi kanan da kanan kanan pangi pangi kanan da	1. Alimitati	IN-3	4.420	8.839	251.722*	8.839	150 5 5 30
9			IA-DIFF	0.026	0.030	97.500°	0.030	É min È
10		~~~~~	IB-DIFF	0.033	0.033	255.000*	0.033	
11			IC-DIFF	0.058	0.061	75.000°	0.061	美一美
12			IA-2	217.661	-290.034	285.298*	-290.034	
13	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	~~~~	IB-2	225.548	-455.768	185.375*	-30.385	240 444444 300 270
14	MW		IC-2	1218.260	1883.841	15.485°	469.579	270
15	erigenetuel entry propagation water line and the second program in the production of the second program in the second	weightery	IN-2	4.581	11.049	150.697*	0.000	
16	- we will be a set of the set of		VAN	79.529	95.118	81.938*	95.118	
17	-==-,	, , , , ,	VBN	60.712	-95.118	257.199*	-95.118	
18	www.www.www.http://www.www.www.www.www.www.www.	ww	VCN	93.115	158.530	71.209°	158.530	Samp#: 553
3	284 ms - 320 280 ms - 480 128 ms - 100 128 ms - 100 200 ms - 320 328 ms - 480 480 ms - 640 584 ms - 800 712 ms	960.840	N L3-TBC	CR OPEN	N A 08:14:	09.414392		Page Duration: 1 Sec(s) - 462 Mils(s) - 74 Mics(s)
P010								

- 14. Preliminary Report, DR/EL has been received from POWERGRID but detailed report is still awaited.
- 15. Details are still awaited from Rajasthan.

POWERGRID representative informed during the meeting:

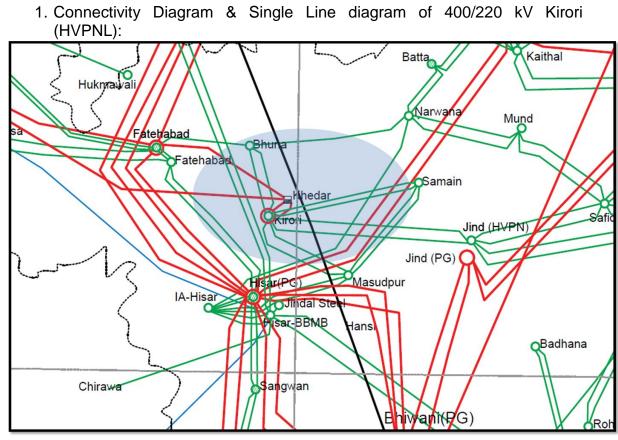
- 1. A/R in 220 kV Bhiwadi (PG)-Kushkhera ckt (both end) needs to be checked and put in service: *Non-auto mode as auto reclosure is not working at Kushkhera end.*
- 2. Reason of operation of bus bar protection at 220kV Bhiwadi (PG) during through fault needs to be relooked: *Exact reason couldn't identify however relay replacement to be done.*
- 3. Operation of bus bar protection during through fault also observed in past on 22nd Jan 2018 & 26th July 2018. Remedial measures taken by POWERGRID for earlier incident: Bus Bar Protection was under observation after operation of bus bar protection. Once relay module got damage and same was replaced. CT associated with faulted phase was also checked for earlier incident to rule out CT saturation. CT saturation was also not found. Now this ABB make RADSS bus bar protection relay is going to be replaced.
- 4. Status of ABB make RADSS bus bar protection replacement with new numerical bus bar protection at 220 kV Bhiwadi (PG): *It shall be completed by March-2019*
- 5. Why 220 kV Mau & Rewari ckt-2 was already under tripped condition from remote end of Bhiwadi (PG): *These ckts was under outage from remote end. Haryana may confirm the further details.*
- 6. At Bhiwadi(PG), time of opening of CB as captured from SCADA SoE is not consistent with PMU based fault timings. Time synchronization in view of above needs to be checked at Bhiwadi(PG): *Time synchronization will be cross checked with RLDC SCADA SoE log at the time of next shutdown*.
- 7. Delayed tripping of bus coupler also to be checked: *It may be due to time* synch error otherwise other connected elements may have tripped in *Z*-2. Delayed clearance had also captured in PMU data.

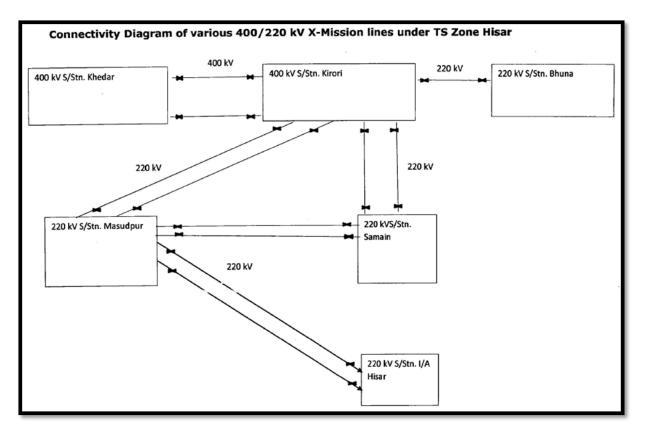
Rajasthan representative informed that auto reclosure in 220 kV Bhiwadi (PG)-Kushkhera ckt is in healthy condition and also in enable condition. End to end testing can be done.

NRPC suggested all the NR utilities to kindly put auto reclosure in service for all 220 kV and above transmission lines.

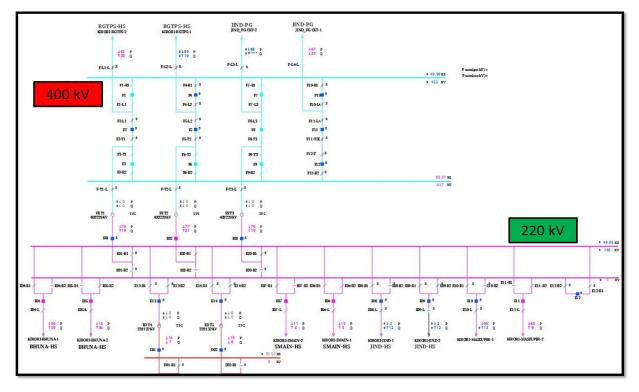
I. Multiple Element tripping at 400/220kV Kirori (Haryana) on 20th Dec 2018 at 01:22hrs

Event category: GI-2 Generation loss: Nil (As per Haryana Report) Loss of load: Nil (As per Haryana Report) Energy Loss: Nil MU (As per Haryana Report)


Description	Reference	Fault Info	Remarks
Fault Clearance Time	PMU data	1280ms	
Phase of the fault	PMU data	R-N fault followed by Y- N fault	

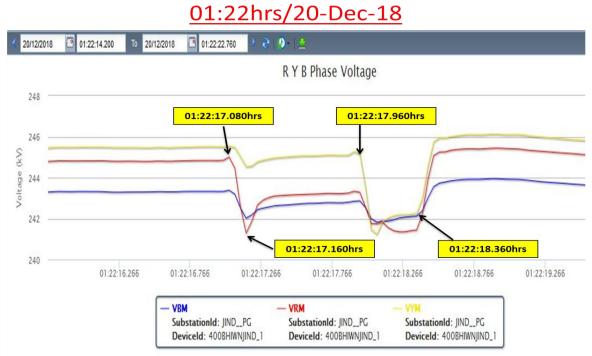

Description	Utilities	Status	Remarks
Availability of Digital Data (SCADA Data)	Haryana	Not Availble	
DR/EL	Haryana	Received	DR/EL of Khedar end not received
Preliminary Report	Haryana	Received	
Detailed Report	Haryana	Not Received	

Description	Clauses	Utility	Remarks
Violation of Clauses	1.IEGC 5.2.r & 5.9.6.c (VI)2.CEA (Technical standards for connectivity to the Grid)Regulation, 2007: Schedule Part 1. (6.1,6.2)3. 43.4.A & 43.4.D of CEA TechnicalStandard for Construction of Electrical Plants and Electric Lines;CEA (Technical standards for connectivity to the Grid)Regulation, 2007: Schedule Part 1. (6.1,6.2,6.3,6.4)CEA (Technical standard for 	Haryana	 Preliminary Report, DR/EL within 24hrs Detailed Report yet to be received Adequately Sectionalized and graded protective relaying system Incorrect/mis-operation unwanted operation of Protection system


part-II, B2	

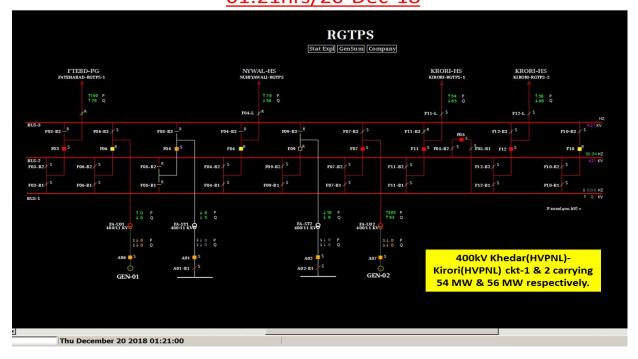
Based on above information description of the events is:

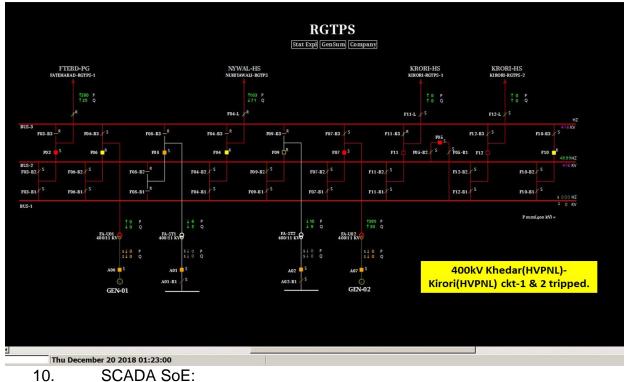



SLD of 400/220 kV Kirori (HVPNL)

- 400/220 kV Kirori (HVPNL) is connected with Khedar D/C, Jind D/C. It also has three 315MVA 400/220 kV ICTs. It has one and half breaker scheme at 400kV voltage level and DM (double main) bus scheme at 220 kV level.
 220kV Kirori (HVPNL) further connected with 220 kV Samain D/C, Masudpur D/C and 220 kV Bhuna S/C.
- 3. As per the analysis of SoE, it is observed that fault may have occurred at 220 kV Khedar-Samain ckt-2.
- 4. As the fault was of temporary nature, the current may have been flown through the earth fault which was virtually created through the insulator disc of the line towers. The healthiness of insulator disc should be got checked from testing lab. The earth fault may have been created through the insulator disc. May be due to foggy weather.
- 5. 400 kV Khedar-Kirori ckt-1 &2 tripped on back earth fault protection (Sensitive setting at 400 kV Khedar end).
- 6. Name of the tripped elements:
 - 400kV Khedar(HVPNL)-Kirori(HVPNL) ckt-1
 - 400kV Khedar(HVPNL)-Kirori(HVPNL) ckt-2
 - 220 kV Kirori(HVPNL)-Smain ckt-1
 - 220 kV Kirori(HVPNL)-Smain ckt-2
 - 220 kV Kirori(HVPNL)-Masudpur ckt
- 7. PMU plot of frequency and phase voltages:

PMU Plot of frequency at Bassi(PG)




PMU Plot of phase voltage magnitude at Jind(PG)

- 8. As per PMU and SCADA data:
 - As per PMU, maximum dip in R-phase followed by Y-phase.
 - Fault Clearance time: **1280ms**
- 9. SCADA MW flows:

SLD of 400kV Khedar(HVPNL) before the incident 01:21hrs/20-Dec-18

SLD of 400kV Khedar(HVPNL) after the incident 01:23hrs/20-Dec-18

Time	S/S Name	Voltage Level (in kV)	Element Name	Element Type	Status	Remarks
01:27:17:403	KIRORI	400kV	KIRORI-RGTPS2	Circuit Breaker	Open	Main CB of 400kV Khedar-Kirori ckt-2 opens

11.As per Haryana report:

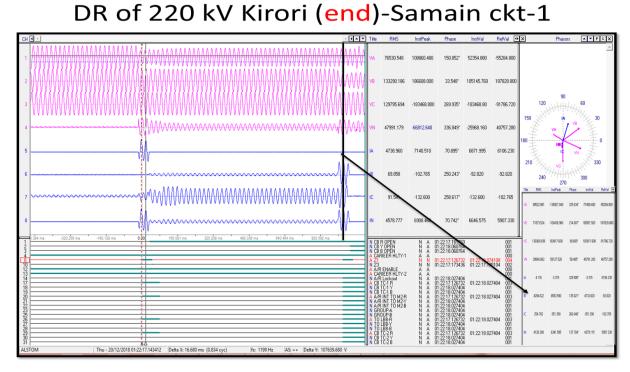
	Duration Relay Operated Relay Operated		Relay Operated Other	Reason/	Normal Time		
Line /Equipment	From	То	This End	end	Fault Found	for restoration	
400 kV Khedar - kirori Ckt 2	01:22 Hrs	03:17 Hrs	Kirori End: Active Group 1, Start Phase C, Aux Direct Trip	Khedar End: Directional E/F, R Phase	Transient fault	02:05 Hrs	
400 kV Khedar - kirori Ckt 1	01:22 Hrs	02:28 Hrs	Kirori End: Not Tripped	Khedar End: Directional E/F, R Phase	Transient fault	01:06 Hrs	
220 kV Kirori- Bhuna Ckt 1	01:22 Hrs	03:47 Hrs	Kirori End: Start Phase A-N, Tripped A Fault Duration: 42.37ms Relay Trip Time: 79.85ms Fault Location XY 6927: m IA: 571.4 A IB: 934.6 A IC: 222.7 A VAN: 19.70kV VBN: 93.50kV VCN: 127.3kV Fault Resistance XY -24.78: Ohm Fault in Zone (Zone: 1)	Bhuna End: Not tripped	Transient fault	02:25 Hrs	
220 kV Kirori- Samain Ckt 1	01:22 Hrs	04:12 Hrs	Kirori End: Start Phase B-N, tripped ABC, Fault Duration: 48.38ms Relay Trip Time: 106.7ms Fault Location XY: 24.18km IA: 0 A IB: 4218 A IC: 215.2 A VAN: 98.01kV VBN: 71.61kV VCN: 129.8kV Fault Resistance XY: 811.3mOhm Fault in Zone (Zone: 1)	Samain : Not Tripped	Transient fault	02:50 Hrs	

	Duration		Relay Operated	Relay Operated Other	Reason/	Normal Time
Line /Equipment	From	То	This End	end Fault Four		for restoration
400 kV Khedar - kirori Ckt 2	01:22 Hrs	03:17 Hrs	Kirori End: Active Group 1, Start Phase C, Aux Direct Trip	Khedar End: Directional E/F, R Phase	Transient fault	02:05 Hrs
400 kV Khedar - kirori Ckt 1	01:22 Hrs	02:28 Hrs	Kirori End: Not Tripped	Khedar End: Directional E/F, R Phase	Transient fault	01:06 Hrs
220 kV Kirori- Bhuna Ckt 1	01:22 Hrs	03:47 Hrs	Kirori End: Start Phase A-N, Tripped A Fault Duration: 42.37ms Relay Trip Time: 79.85ms Fault Location XY 6927: m IA: 571.4 A IB: 934.6 A IC: 222.7 A VAN: 19.70kV VBN: 93.50kV VCN: 127.3kV Fault Resistance XY -24.78: Ohm Fault in Zone (Zone: 1)	Bhuna End: Not tripped	Transient fault	02:25 Hrs
220 kV Kirori- Samain Ckt 1	01:22 Hrs	04:12 Hrs	Kirori End: Start Phase B-N, tripped ABC, Fault Duration: 48.38ms Relay Trip Time: 106.7ms Fault Location XY: 24.18km IA: 0 A IB: 4218 A IC: 215.2 A VAN: 98.01kV VBN: 71.61kV VCN: 129.8kV Fault Resistance XY: 811.3mOhm Fault in Zone (Zone: 1)	Samain : Not Tripped	Transient fault	02:50 Hrs

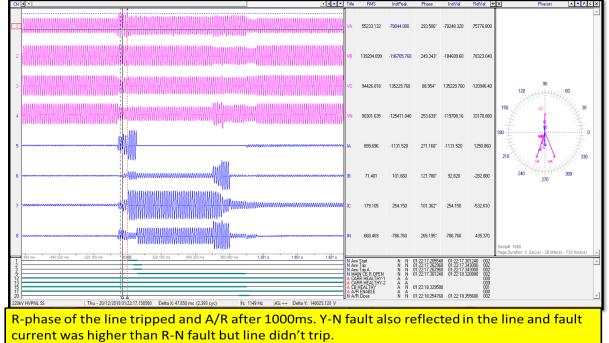
Event Log (Khedar end)

Events #	s 20-12-2018 15:23:16 Time (ET+EM)	Station	Bay	Device	Object Text	State Text	Event Text
1 .	20-12-18 01:22:17.118		KIRORI-2	21L1	Directional E/F start	Alarm	Alarm
2 .	20-12-18 01:22:17.119		KIRORI-1	21L1	Directional E/F start	Alarm	Alarm
3 .	20-12-18 01:22:17.126		FATEHABAD-1	2112	Directional E/F start	Alarm	Alarm
4 .	20-12-18 01:22:17.120		KIRORI-2	21L1	Directional E/F start	Alarm	Alam
5 .	20-12-18 01:22:17.150		KIRORI-1	21L1	Directional E/F start	Alarm	Alarm
6	20-12-18 01:22:17.299		FATEHABAD-1	21L2	Directional E/F start	Normal	Normal
7 .	20-12-18 01:22:17.299		FATEHABAD-1	2112	Directional E/F start	Alarm	Alarm
8	20-12-18 01:22:18.013		FATEHABAD-1	2112	Directional E/F start	Normal	Normal
9 .	20-12-18 01:22:18.017		FATEHABAD-1	21L2	Directional E/F start	Alarm	Alarm
10 .			FATEHABAD-1	21L2	Directional E/F start	Alarm	Alarm
10	20-12-18 01:22:18.022			21L1	Directional E/F start	Normal	Normal
11	20-12-18 01:22:18.052		FATEHABAD-1		Directional E/F start	Normal	Normal
12	20-12-18 01:22:18.117		FATEHABAD-1	21L2		Alarm	Alarm
13 .	20-12-18 01:22:18.130		FATEHABAD-1	21L2	Directional E/F start	Normal	Normal
14	20-12-18 01:22:18.184		FATEHABAD-1	21L2	Directional E/F start	Alam	Alarm
15 *	20-12-18 01:22:18.265		KIRORI-2	21L1	Directional E/F operated	Alarm	Alarm
16 *	20-12-18 01:22:18.269		KIRORI-2	21L1	Trip R phase	Alarm	Alarm
17 *	20-12-18 01:22:18.269		KIRORI-2	21L1	Trip Y phase	Alarm	Alarm
18 *	20-12-18 01:22:18.269		KIRORI-2	21L1	Trip B phase		Alarm
19 *	20-12-18 01:22:18.269	HISAR	KIRORI-2	21L1	DT send channel-1	Alarm	Alarm
20 .	20-12-18 01:22:18.269	HISAR	KIRORI-2	21L1	Main-1 A/R inhibit	Alarm	Alarm
21 *	20-12-18 01:22:18.269	HISAR	KIRORI-2	21L1	Main-1 relay general trip	Alarm	
22 .	20-12-18 01:22:18.274	HISAR	KIRORI-2	21L1	Main-1 prepare 3-ph trip	Alarm	Alarm
23 .	20-12-18 01:22:18.287	HISAR	KIRORI-1	21L1	Directional E/F operated	Alarm	Alarm
24 .	20-12-18 01:22:18.289	HISAR	KIRORI-1	21L1	Main-1 relay general trip	Alarm	Alarm
25 *	20-12-18 01:22:18.289		KIRORI-1	21L1	Trip R phase	Alarm	Alarm
26 .	20-12-18 01:22:18.289		KIRORI-1	21L1	Trip Y phase	Alarm	Alarm
27 .	20-12-18 01:22:18.289		KIRORI-1	21L1	Trip B phase	Alarm	Alarm
28 *	20-12-18 01:22:18.289		KIRORI-1	21L1	DT send channel-1	Alarm	Alarm
29 *	20-12-18 01:22:18.296		KIRORI-2	Q52PH	Breaker position indication Y phase	Intermediate	Intermediate
30 .	20-12-18 01:22:18.297		KIRORI-2	Q52PH	Breaker position indication R phase	Intermediate	Intermediate
31 .	20-12-18 01:22:18.297		KIRORI-2	Q52PH	Breaker position indication B phase	Intermediate	Intermediate
32	20-12-18 01:22:18.305		KIRORI-2	Q52PH	Breaker position indication Y phase	Open	Open
33 *	20-12-18 01:22:18.307		KIRORI-2	Q52PH	Breaker position indication R phase		Faulty
34 .	20-12-18 01:22:18.307		KIRORI-2	Q52PH	Breaker position indication B phase	Faulty	Faulty
	20-12-18 01:22:18:307		KIRORI-2	Q52	Breaker position indication	Open	Open
35	20-12-18 01:22:18.311		KIRORI-2	Q52PH	Breaker position indication R phase		Open
36	20-12-18 01:22:18.311		KIRORI-2	Q52PH	Breaker position indication B phase		Open
37	20-12-18 01:22:18.311			Q52PH	Breaker position indication R phase		Intermediate
38 *	20-12-18 01:22:18.316		KIRORI-1	Q52PH Q52PH	Breaker position indication Y phase		Intermediate
39 *	20-12-18 01:22:18.316		KIRORI-1		Breaker position indication B phase		Intermediate
40 *	20-12-18 01:22:18.317		KIRORI-1	Q52PH	Directional E/F start	Normal	Normal
41	20-12-18 01:22:18.320		KIRORI-2	21L1	Breaker position indication Y phase		Open
42	20-12-18 01:22:18.325		KIRORI-1	Q52PH			Open
43	20-12-18 01:22:18.326	HISAR	KIRORI-1	Q52PH	Breaker position indication R phase		Open
44	20-12-18 01:22:18.326	HISAR	KIRORI-1	Q52	Breaker position Indication	Open	
45	20-12-18 01:22:18.326	HISAR	KIRORI-1	Q52PH	Breaker position Indication B phase		Open Normal
46	20-12-18 01:22:18.331	HISAR	KIRORI-2	21L1	Directional E/F operated	Normal	
47	20-12-18 01:22:18.336		KIRORI-2	21L1	DT send channel-1	Normal	Normal

Event Log (Khedar end)

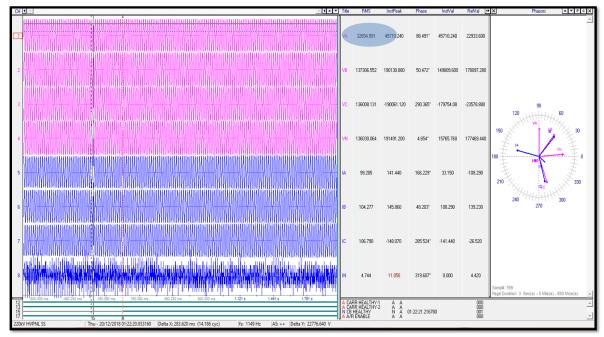

Even	ts 20-12-2018 15:26:15	3-141 J. 18			1		이번 물건을 가지 않는 것	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#		Station	Bay	Device				Event Text
1	20-12-18 01:22:18.336		KIRORI-2	21L1		Main-1 A/R inhibit	Normal	Normal
2	20-12-18 01:22:18.340		KIRORI-1	21L1		Directional E/F start	Normal	Normal
3	20-12-18 01:22:18.348	HISAR	KIRORI-1	21L1		Directional E/F operated	Normal	Normal
4	20-12-18 01:22:18.352	HISAR	KIRORI-1	21L1	1.		Normal	Normal
5	20-12-18 01:22:18.438	HISAR	KIRORI-2	Q52	0.02.0			On
6	20-12-18 01:22:18.438	HISAR	KIRORI-2	89A			Off	Off
7	20-12-18 01:22:18.438		KIRORI-2	89D			Off	Off
8	20-12-18 01:22:18.438		KIRORI-2	89L				Off
9	20-12-18 01:22:18.470		KIRORI-2	21L1			Normal	Normal
10	20-12-18 01:22:18.470		KIRORI-2	21L1			Normal	Normal
11	20-12-18 01:22:18.470		KIRORI-2	21L1			Normal	Normal
12	20-12-18 01:22:18.470		KIRORI-2	21L1			Normal	Normal
13				Q52			On	On
14	20-12-18 01:22:18.476		KIRORI-1				Off	Off
	20-12-18 01:22:18.476		KIRORI-1	89B			Off	Off
15	20-12-18 01:22:18.476		KIRORI-1	89D			Off	Off
16	20-12-18 01:22:18.476		KIRORI-1	89L				Normal
17	20-12-18 01:22:18.490		KIRORI-1	21L1		Main-1 relay general trip	Normal	
18	20-12-18 01:22:18.490		KIRORI-1	21L1		Trip R phase	Normal	Normal
19	20-12-18 01:22:18.490		KIRORI-1	21L1		Trip Y phase	Normal	Normal
20	20-12-18 01:22:18.490		KIRORI-1	21L1		Trip B phase	Normal	Normal
21	20-12-18 01:22:18.492	HISAR	KIRORI-1	21L1		Directional E/F start	Normal	Normal
22	20-12-18 01:22:18.541	HISAR	KIRORI-2	21L1		Directional E/F start	Normal	Normal
23	20-12-18 01:22:18.580	HISAR	KIRORI-1	21L1		Carrier channel-1 fail	Normal	Normal
24	20-12-18 01:22:18.583		KIRORI-1	21L1		Main-1 A/R inhibit	Normal	Normal
25 *	20-12-18 01:22:23.710		KIRORI-1	21L1		Carrier channel-1 fail	Alarm	Alarm
26 *	20-12-18 01:22:23.713		KIRORI-1	21L1		Main-1 A/R inhibit	Alarm	Alarm
27	20-12-18 02:16:33.236		KIRORI-1	86A		General trip relay reset cmd	Execute	Execute
28	20-12-18 02:16:33.427		KIRORI-1	Q52		Breaker close interlocked	Off	Off
29	20-12-18 02:16:33.580		KIRORI-1	86A		General trip relay reset cmd		A STATE STATE
	20-12-18 02:21:33.580		SAS1	our		User: OPERATOR3	Login	Login
30			KIRORI-1	Q52		Breaker close select command	Selected	Selected
31	20-12-18 02:28:55.437		KIRORI-1	Q52		Breaker close execute command	Executed	Executed
32	20-12-18 02:28:56.265			Q52		User: OPERATOR3	Operation performed	Operation performed
33	20-12-18 02:28:56.266	HISAR	SAS1			Breaker position indication B phase		Intermediate
34 *	20-12-18 02:28:56.434	HISAR	KIRORI-1	Q52PH		Breaker position indication R phase		Intermediate
35 *	20-12-18 02:28:56.436	HISAR	KIRORI-1	Q52PH		Breaker position indication R phase		Intermediate
36 .	20-12-18 02:28:56.436	HISAR	KIRORI-1	Q52PH		Breaker position indication Y phase		Closed
37	20-12-18 02:28:56.453	HISAR	KIRORI-1	Q52PH		Breaker position indication B phase		Normal
38	20-12-18 02:28:56.455	HISAR	KIRORI-1	21L1		CB spring charged	Normal	Closed
39	20-12-18 02:28:56.456	HISAR	KIRORI-1	Q52PH		Breaker position indication Y phase	Closed	Closed
	20-12-18 02:28:56.457	HISAR	KIRORI-1	Q52PH		Breaker position indication R phase	Closed	
40	20-12-18 02:28:56.457	LISAR	KIRORI-1	Q52		Breaker position indication	Closed	Closed
41	20-12-18 02:28:56.457	LICAD	KIRORI-1	Q52		Breaker open interlocked	Off	Off
42	20-12-18 02:28:56.628	HIGAR	KIRORI-1	Q52		Breaker close interlocked	On	On
43	20-12-18 02:28:56.628	HISAR	KIRORI-1	89B		Disconn. open interlocked	On	On
44	20-12-18 02:28:56.628	HISAR		89D		Disconn. open interlocked	On	On .
45	20-12-18 02:28:56.628	HISAR	KIRORI-1	89D		Disconn. open interlocked	On	On
46	20-12-18 02:28:56.628	HISAR	KIRORI-1			CB spring charged	Alarm	Alarm
47 *	20-12-18 02:28:59.929	HISAR	KIRORI-1	21L1		OD spring charged	1.	199 日本語 建二氢基

Prescribed Format For Daily Tripping and breakdown

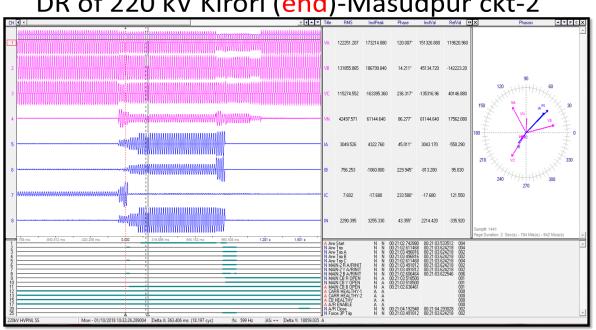

ł

					d Format For Daily	A CONTRACTOR OF	- Internet of the	the contract dealer and the		alig have been
あたいれた	Date	Name of TS Division	s/sh.	Line Acquipment	Duration -	To	Relay Operated This End	Relay Operated Other end	Reason Fault Found	Normal Tin for restoration
制 <u>包</u> 1		400 kV Kirori	400 kV Kirori	400 kV Khedar - kirori Ckt 2	01:22 Hrs	03:17 Hrs	i, outri indo oi	Khedar End: Directional E/F, R Phase	Transient fault	02:05 Hrs
2	20 12 2018	400 kV	400 kV Kirori	400 kV Khedar - kirori Ckt 1	01:22 Hrs		Kirori End: Not Tripped	Khedar End: Directional E/F, R Phase	Transient fault	01:06 Hrs
3	00 40 00 10	Kirori 400 kV Kirori	400 kV Kirori	220 kV Kirori- Bhuna Ckt 1	01:22 Hrs	03:47 Hrs	6.927 KM,IA=571.1 A, IB=934.6, IC =222.7 A	Bhuna End: Not tripped	Transient fault	02:25 Hrs
4		400 kV Kirori	400 kV Kiron	220 kV Kirori- Samain Ckt 1	01:22 Hrs	04:12 Hrs	Kirori End: Start Phase B- N, tripped ABC, Zone 1 Disatnce 24.18 KM,IA=0 A, IB=4.281 kA, IC =215.2 A	Samain : Not Tripped	Transient fault	02:50 Hrs
5	20.12.2018	400 kV Kirori	400 kV Kirori	220 kV Kirori-Samain Ckt 2	01:22 Hrs	04:13 Hrs	Kirori End: Start ABC, ZONE 2, distance 39.06 km, IA=4.162 kA, IB=3.920 kA, IC=505.5A	Samain : Not Tripped	Transient fault	02:49 Hrs
6	20.12.2018	400 kV Kirori	400 KV Kirori	220 kV Kirori- Masudpur Ckt 1	01:22 Hrs	Auto Reclose at 01: 22 Hrs	Kirori End: DPS opearted in Zone 1, Start Phase A: N, Tripped A, distance 21.29 km, IA=1.785 A, IB= 551.1 A, IC=814.9 A, A/R opearted	Samain : Not Tripped	Transient fault	NA
7	20.12.2018	400 kV Kirori	400 kV Kirori	220 kV Kirori- Masudpur Ckt 2	01:22 Hrs	03:00 Hrs	Kirori End: DPS opearted in Zone 1, Start Phase A B-N, Tripped ABC, distance 28.37 km, IA=2.590 A, IB= 1.104 A IC=6.398 A,	Samain : Not Tripped	Transient fault	1:38 Hrs
8	20.12.2018	XEN TS Hisar	220 kV Masudpu	r 220 kVMasudpur- Samian ckt-1	1.22 hrs	03:25 Hrs	Masudpur end: DPS operated in Zone-3 Y- phase fault current 0 amp.	Samain : Not Tripped	Transient fault	2.03 Hrs
9	20.12.2018	XEN TS Hisar	220 kV Masudpu	r 220 kVMasudpur- Samian ckt2	1.22 hrs	03:25 Hrs	Masudpur end: DPS opereted in Zone-3 R- phase fault current 108 amp.	3 Samain : Not Tripped	Transient fault	2.03 Hrs

Data of EL and DR of Kirori End is attached EL at Khedar end is also attached.

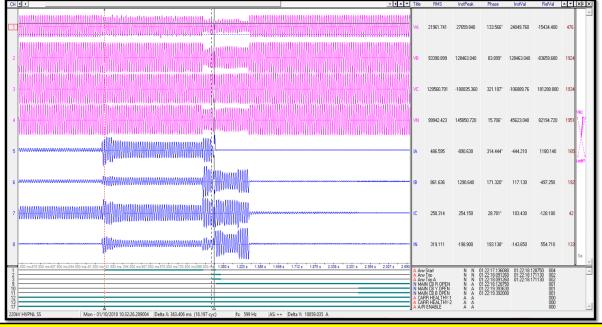


DR of 220 kV Kirori (end)-Masudpur ckt-1



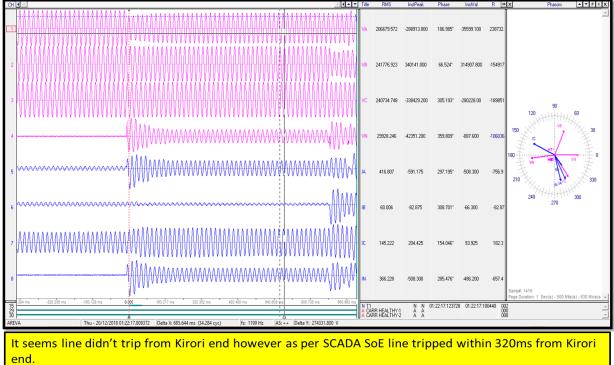
R-phase voltage measurement in DR is not ok. (low throughout DR time)

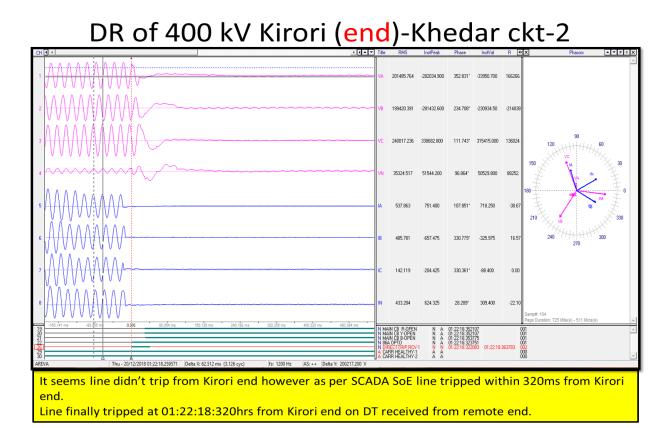
DR of 220 kV Kirori (end)-Masudpur ckt-1


Line didn't trip during fault

DR of 220 kV Kirori (end)-Masudpur ckt-2

R-N fault than why Blue phase of the line tripped. (R-phase continuously fed the fault) reason? After 900ms, on occurrence of Y-N fault, all three phase of the line tripped


DR of 220 kV Kirori (end)-Bhuna ckt



R-N fault line tripped after 1000ms probably on Z-3/reverse zone protection. (Why only single phase tripping occurred?)

After 1200ms of opening of R-phase CB, Y&B-phase also tripped probably on PD (Pole discrepancy)

DR of 400 kV Kirori (end)-Khedar ckt-2

Extract of Haryana Report

Observation and Suggestion:

- > The fault occurred in the system was temporary in nature
- > No visible fault was observed in any of the tripped elements
- As per the analysis of SoE, it is observed that fault may have occurred at 220 kV Khedar-Samain ckt-2.
- As the fault was of temporary nature, the current may have been flown through the earth fault which was virtually created through the insulator disc of the line towers. The healthiness of insulator disc should be got checked from testing lab.
- The earth fault may have been created through the insulator disc. May be due to foggy weather.
- The numerical relays, should be time synchronized with GPS server at all 220 kV S/S, which will help in analysis of faults.
- The earth fault setting at 400 kV Khedar is 0.120second in Micom relay. The setting is very much low as compared to norms of NRPC.

Time	Time Chronology	Voltage Level (in kV)	Element Name	Element Type	Status	Source	Remarks
01:22:17:080	Oms					PMU data	R-N fault
01:22:17:161	80ms	220 kV	Kirori-Smain ckt-1 (fault current: 4.3kA)	R-phase CB	Open	DR data	R-N fault
01:22:17:262	420ms	220 kV	Kirori-Masudpur ckt-1 (fault current: 1.7kA)	R-phase CB	Open	DR data	R-N fault
01:27:17:403	320ms	400kV	Kirori-Khedar (RGTPS) ckt-2	CB (All three phase CB)	Open	SCADA SoE	Main CB of 400kV Khedar-Kirori opens
01:22:17:960	880ms					PMU data	Y-N fault
01:22:18:060	980ms	220 kV	Kirori-Smain ckt-1 (fault current: 4.2kA)	All three phase CB	Open	DR data	Y-N fault (All three phase of the line tripped before line A/R)
01:22:18:091	1010ms	220 kV	Kirori-Bhuna ckt (fault current: 1kA)	R-phase CB	Open	1	Other two phase of the line tripped after 1200ms of R-phase tripping
01:22:18:254	1175ms	220 kV	Kirori-Masudpur ckt-1 (fault current: 1.7kA)	R-phase CB	A/R	DR data	R-phase voltage was low before fault and after fault clearance
01:22:18:322	1240ms	400kV	Kirori-Khedar (RGTPS) ckt-2	CB (All three phase CB)	Open	DR data	
01:22:18:360	1280ms					PMU data	Fault cleared

12. Consolidated SoE:

13. As per DR details:

- 400 kV Kirori-Khedar ckt-2 didn't trip from Kirori end however as per SCADA SoE line tripped within 320ms from Kirori end. Line finally tripped at 01:22:18:320hrs from Kirori end on DT received from remote end.
- 220 kV Kirori (end)-Bhuna ckt tripped on R-N fault, line tripped after 1000ms probably on Z-3/reverse zone protection. (Why only single phase tripping occurred?) After 1200ms of opening of R-phase CB, Y&B-phase also tripped probably on PD (Pole discrepancy).
- Blue phase of 220 kV Kirori (end)-Masudpur ckt-2 tripped during R-N fault. Why Blue phase of the line tripped. (R-phase continuously fed the fault) reason? After 900ms, on occurrence of Y-N fault, all three phase of the line tripped
- R-phase of 220 kV Kirori (end)-Masudpur ckt-1 tripped and A/R after 1000ms. Y-N fault also reflected in the line and fault current was higher than R-N fault but line didn't trip. R-phase voltage measurement in DR is not ok. (low throughout DR time)
- 14. Preliminary Report, DR/EL has been received from Haryana but detailed report is still awaited from Haryana.

HVPNL representative informed during the meeting:

- 1. Exact location of fault and nature of fault: Fault was in 220 kV Kirori-Smain ckt-1. Distance protection at 220 kV Kirori end operated in Z-1 but Smain end distance protection was not in service due to unavailability of bus PT. 220 kV Kirori-Smain ckt-2 tripped in Z-2 from Kirori end.
- 2. Sequence of tripping needs to be reported and explained: To be reported.
- 3. Reason of delayed clearance of fault: Fault was in 220 kV Kirori-Smain ckt-1. Distance protection at 220 kV Kirori end operated in Z-1 but Smain end distance protection was not in service due to unavailability of bus PT. It resulted into delayed clearance of fault.
- 4. Exact sequence of events in view of cause of event; protection operation/non-operation; opening, closing of breaker, isolator; relevant alarms and any other relevant detail to be shared: *To be reported*
- 5. Sensitive back up earth fault protection setting of 400 kV Khedar (end)-Kirori ckt-1 & 2 to be reviewed: *TMS setting for DEF protection at Khedar end is* 0.120 however at Kirori end it is 0.480. Sensitive DEF setting at Kirori end resulted into tripping of the line in 100ms.
- 6. 220 kV Kirori (end)-Bhuna ckt: Single phase (R-phase) tripping of line after 1000ms needs to be looked into? After 1200ms of opening of R-phase CB, Y&B-phase also tripped, reason of tripping? : NRLDC representative informed that negative resistance value sensed by the relay which mean relay sensed the fault in reverse direction. Haryana representative agreed to recheck the Protection setting for 220 kV Kirori (end)-Bhuna ckt.
- 7. Tripping of Blue phase of 220 kV Kirori (end)-Masudpur ckt-2 during R-N fault to be checked? R-phase continuously fed the fault for another 900ms, reason to be looked into: *Time synch error in the relay, other points to be checked and reported later on*.
- 8. R-phase of 220 kV Kirori (end)-Masudpur ckt-1 tripped and A/R after 1000ms. Y-N fault also reflected in the line and fault current was higher than R-N fault but line didn't trip, reason to be checked? R-phase voltage measurement in DR is not ok. (Low throughout DR capturing time): *Voltage measurement has taken from bus PT so bus PT shall be checked. Other points to be checked and reported later on.*
- 9. Availability of time synchronized SCADA SoE to be looked into.
- 10. Detailed report, remedial measures report and supporting DR/EL (only for 400 kV Khedar end) needs to be submitted by HVPNL: *Detailed report to be shared within 10days*

NRLDC representative raised concern about non-submission of information wrt tripping agenda (points for discussion).

NRPC suggested HVPNL to discuss the issue with HPGCL wrt sensitive DEF setting in 400 kV Khedar-Kirori ckt-1 & 2 and share the detailed report within

10days. If there is any issue in discussion than separate meeting shall be called at NRPC.

J. Tripping other than to be discussed in 37th PSC meeting:

For better reliability of power system each and every multiple element tripping should be analyzed properly and remedial measures to be taken by utilities. Total 78 multiple element tripping event reported by NRLDC to RPC and constituents for the month of Sep to Dec 2018.

Preliminary reports of all these trippings are available at NRLDC website and already send to concerned utilities within 24hrs of the incident.

Among 78 events, around 19 events would be discussed in 37th PSC meeting. For rest events, utilities may kindly submit the details (DR/EL and detailed report along with remedial measures) to NRLDC and NRPC at mail ID: nrldcso2@posoco.in, nrldcso2@gmail.com, seo-nrpc@nic.in and sep-nrpc@nic.in.

List of the all the multiple elements tripping event is available at NRPC website at following link:

Member may kindly submit the details.