

भारत सरकार Government of India विद्युत मंत्रालय Ministry of Power उत्तर क्षेत्रीय विद्युत समिति Northern Regional Power Committee

सं. उ.क्षे.वि.स./प्रचालन/107/01/2023/ 3698-3697

दिनाँक: 31.03.2023

सेवा में / To,

प्रणाली अध्ययन उप-समिति के सभी सदस्य (संलग्न सूचीनुसार) Members of System Studies Sub-Committee (As per List)

विषय: प्रणाली अध्ययन उप-समिति की 2^{वीं} बैठक की कार्यसूची । Subject: Agenda for 2nd meeting of System Studies Sub-Committee-reg

महोदय / Sir,

प्रणाली अध्ययन उप-समिति की 2^{df} बैठक दिनांक 05 अप्रैल, 2023 को 1100 बजे विडियो कोंफ्रेंसिंग के माध्यम से आयोजित की जाएगी। बैठक की कार्यसूची संलग्न है। बैठक का लिंक ऐव पासवर्ड नियत समय पर ईमेल द्वारा उपलब्ध करा दिया जायेगा। कृपया बैठक में भाग लेने की कृपा करें।

The 2nd meeting of System Studies Sub-Committee will be held at **1100 Hrs** on **05th April, 2023** via video conferencing. Agenda for the same is attached. The link and password for joining the meeting shall be sent in due course of time to the respective email-IDs. Kindly make it convenient to attend the same.

> भवदीय Yours faithfully,

(संतोष कमार

(सताष कुमार) अधीक्षण अभियंता

Members of System-Study Sub-Committee of NRPC

S.No	Name	Designation	Organisation	Email-ID
1	Sh.Ashok Kumar	EE(System Study)	PTCUL	ee_sys_st@ptcul@org
2	Sh.Sanjay Mathur	EE II(P&P)	RVPNL	se.pp@rvpn.co.in
3	Sh.Kamal Patidar	EE I(SOLD)		se.sold@rvpn.co.in
4	Sh. Mohit Walia	Dy. Chief Engineer/SLDC(Operation)	PSTCL	se-sldcop@pstcl.org
5	Sh. Rajbir Walia	Addl. SE/P&OS		srxen-prot2-ldh@pstcl.org
6	Sh. Nitish Bansal	Senior XEN/SLDC(Operation)		ase-sldcop@pstcl.org
7	Sh. Nitin Kumar	Senior Executive Engineer/Planning-1		srxen-plann1@pstcl.org
8	Sh. R. N. Bedi	President	LPGCL & BEL	rnbedi.ltp@lpgcl.com
9	Ms. Rashmi Pant Joshi	DGM	PGCIL	rashmi.pantjoshi@powergrid.in
10	Suruchi Jain	DGM	NRLDC,Grid-India	suruchi.jain@grid-india.in
11	Gaurav Singh	Manager		gauravsingh@grid-india.in
12	Gaurav Malviya	Manager		gauravmalviya@grid-india.in
13	Sh. Ram Kumar	DGM(T)	DTL	dgmplanning.dtl2016@gmail.com
14	Sh. Anjani Kumar Shukla	SE	UPPTCL	eerau@upptcl.org
15	Sh. Ram Sharan Singh	EE	UPSLDC	sera@upsldc.org
16	Sh. Rajesh Kumar Jangra	EE(System Study)	HVPNL	xenssplg@hvpn.org.in
17	Sh. Priya Ranjan	AE (System Study)		
18	Sh. Kashish Bhambhani	GM	CTUIL	kashish@powergrid.in
19	Sh. Sandeep Kumawat	Chief Manager		sandeepk@powergrid.in

Contents

<u>प्रणाली अध्ययन उप-समिति की 2 वीं बैठक</u> 2nd MEETING OF SYSTEM STUDIES SUB-COMMITTEE

Time & Date of meeting: 11:00 HRS; 5th April 2023

Venue: Video Conferencing

AGENDA

- A.1 Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase I (Agenda by RVPN)
 - A.1.1 Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
 - A.1.2 In this regard, AVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.
 - A.1.3 It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
 - A.1.4 AVVNL proposes installation of capacitor banks at 732 Nos. of 33/11 kV substations out of total 1974 Nos. of substations spread across 12 circles and 11 districts of Rajasthan.
 Total MVAR installation will be 1464.80 MVAR. Detailed list of these substations have been enclosed with DPR.
 - A.1.5 Methodology adopted by AVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about 'real time' power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.

- A.1.6 Approximately 20 lakh consumers at these 732 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- A.1.7 Total cost of the scheme comes around 222.37 cr. for which detailed cost estimated have been enclosed with the DPR. Detailed Project Project (DPR) is placed as **Annexure-I.**
- A.1.8 Scheme detailed as under are posed for approval of funding from PSDF-

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(9(000)
			(Rs. In Cr.)		(%age)
1	Installation of Capacitor	Approved	222.37	Issued	90%
	Banks on 11 KV Side				
	33/11 KV Substations of				
	Ajmer Vidyut Vitran				
	Nigam Limited (AVVNL)				

A.1.9 PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Members may kindly discuss.

- A.2 Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase I (Agenda by RVPN)
- A.2.1 Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
- A.2.2 In this regard, JdVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.

- A.2.3 It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
- A.2.4 JdVVNL proposes installation of capacitor banks at 911 Nos. of 33/11 kV substations out of total 2337 Nos. of substations spread across 12 circles and 10 districts of Rajasthan.
 Total MVAR installation will be 1829.52 MVAR. Detailed list of these substations have been enclosed with DPR.
- A.2.5 Methodology adopted by JDVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about 'real time' power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.
- A.2.6 Approximately 30 lakh consumers at these 911 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- A.2.7 Total cost of the scheme comes around 296.85 cr. for which detailed cost estimated have been enclosed with the DPR. Detailed Project Project (DPR) is placed as **Annexure-II**.
- A.2.8 Scheme detailed as under are posed for approval of funding from PSDF-

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(%age)
			(Rs. In Cr.)		(mage)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur Vidyut Vitran Nigam Limited (JdVVNL)	22.08.2022	296.85	22.08.2022	90%

A.2.9 PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Members may kindly discuss.

A.3 Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase I (Agenda by RVPN)

- A.3.1 Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
- A.3.2 In this regard, JVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.
- A.3.3 It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
- A.3.4 JVVNL proposes installation of capacitor banks at 577 Nos. of 33/11 kV substations out of total 1893 Nos. of substations spread across 13 circles and 12 districts of Rajasthan. Total MVAR installation will be 1159.176 MVAR. Detailed list of these substations have been enclosed with DPR.
- A.3.5 Methodology adopted by JVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about 'real time' power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.
- A.3.6 Approximately 20 lakh consumers at these 577 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- A.3.7 Total cost of the scheme comes around 180.47 cr. for which detailed cost estimated have been enclosed with the DPR.Detailed Project Project (DPR) is placed as Annexure-III.
- A.3.8 Scheme detailed as under are posed for approval of funding from PSDF-

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(%age)
			(Rs. In Cr.)		(mage)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur Vidyut Vitran Nigam Limited (JVVNL)	08.08.2022	180.47	08.08.2022	90%

A.3.9 PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Members may kindly discuss.

An ISO 9001:2015 Certified Company RAJASTHAN RAJYA VIDYUT PRASARAN NIGAM LIMITED. [Corporate Identity Number (CIN):U40109RJ2000SGC016485] (Regd. Office: Vidyut Bhawan, Jan Path, Jyoti Nagar, Jaipur - 302 005) OFFICE OF THE SUPERINTENDING ENGINEER (PROJECT & PLANNING) ① +91-141-2740623, Fax:+91-141-2740794; e-mail: se.pp@rvpn.co.in; website:www.rvpn.co.in

No. RVPN/SE(P&P)/XEN -2/AE-III/ F. /D 1712 Jaipur, Dt.13/12/2022

Member Secretary

Northern Regional Power Committee, 18-A, Shaheed Jeet Singh Marg, Katwaria Sarai, New Delhi-110016

Sub: Submission of agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'. Dear Sir.

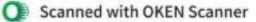
On the above captioned subject, kindly find enclosed herewith the agenda note for Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund. Summary of the scheme is mentioned below:-

S. No.	Scheme details	Estimated Amount
		(Rs. In Cr.)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer Vidyut Vitran Nigam Limited (AVVNL)	222.37

Enclosure:

- 1. Agenda Note of AVVNL
- 2. Annexure A- DPR provided by AVVNL
- 3. Annexure B- RERC Order dated 24.03.2001
- 4. Annexure-C- Rajasthan Electricity Grid Code, 2008
- 5. Annexure-D- Format A5: Appraisal by STU

(S.C.Meena) Chief Engineer (PP&D) OL


Format A5 Page 1 of 1

Brief Details of the Project Appraisal by CTU / STU / RPC

ltem	Details to be filled by Applicant Utility			
Appraisal By:	STU СТU	RPC		
Date of Submission to CTU / STU / RPC for approval	Scheme was submitted to Rajasthan Rajya Vidyut Prasaran Nigam Ltd. (STU) by AVVNL on dated 01.12.2022.			
Name of the Scheme	Installation of Dynamic/Automatic capa Vidyut Vitran Nigam Limited (AVVNL)	acitor banks on 11 kV side of 33/11 kV substations of Ajmer under PSDF-Phase-I		
Copy of the Appraisal Report by CTU / STU / RPC is Attached at Annexure	Yes No [DPR enclosed at Enclosure-1)]			
1	Summary of Proposal Appraised	The DPR has been prepared so as to improve & strengthe the operational reliability, enhancement of system, real-tim data capturing and better management of reactive power.		
Summary of observations from CTU/ STU/RPC	Technical Observations	As per the order of Rajasthan Electricity Regulator, Commission (RERC) dated 24.03.2001, 50% of the total MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by cach DISCOM). This project report proposes installation of 1466 MVAR which is justified given their target of 1660 MVAR for operational reliability and effective voltage control.		
Appraisal Report	Financial Observations	As per guideline/procedure for disbursement of funds from PSDF in category 5.1(b), this scheme may be posed for funding/grant from PSDF fund on 90% basis.		
	Compliance of Grid Standards / Codes by the Applicant	All the grid standards, IS, IEC required, shall be followed for implementation of the scheme		
	Limitations / Shortcomings pointed out by CTU/STU/RPC if any	NIL		
	Recommendations of CTU/STU/RPC	The scheme may be posed for funding/ grant from PSDF fund.		

Date:-

ΔM Chief Engineer (PP&D) RVPN, Jaipur

Agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'.

L

The proposal herein is to accord approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Ajmer DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'.

II

Power System Development Fund (PSDF) provides grant for improvement of Transmission System. PSDF provides fund for the following categories-

- a) Creating necessary transmission system of strategic importance based on operational feedback by load dispatch centers for relieving congestion in interstate transmission system and intrastate system which are incidental to ISTS.
- b) Installation of shunt capacitor, series compensators and other reactive energy generators including reactive energy absorption, dynamic reactive support etc. for improvement of voltage profile in the Grid.
- c) Installation of standard and special protection schemes, pilot and demonstrative projects, projects for setting right the discrepancies identified in the protection audit on regional basis, any communication/ measurement / monitoring schemes including installation of Phasor Measurement Units (PMUs) etc.
- d) Renovation & Modernization of transmission and distribution system for relieving congestion.
- e) Any other scheme/project in furtherance of the above objectives, such as conducting technical studies and capacity building etc.
- f) Other schemes benefitting large number of utilities collectively and having a significant impact towards the power system development and Grid operation, on case to case basis.

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(%age)
			(Rs. In Cr.)		
1	Installation of Capacitor	Approved	222.37	Issued	90%
	Banks on 11 KV Side				
	33/11 KV Substations of				
	Ajmer Vidyut Vitran				
	Nigam Limited (AVVNL)				

Presently, scheme detailed as under are posed for approval of funding from PSDF.

PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Brief note on the scheme-

- 1. Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
- 2. In this regard, AVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.
- 3. It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
- AVVNL proposes installation of *capacitor banks at 732 Nos. of 33/11 kV substations* out of total 1974 Nos. of substations spread across 12 circles and 11 districts of Rajasthan. *Total MVAR installation will be 1464.80 MVAR.* Detailed list of these substations have been enclosed with DPR.
- 5. Methodology adopted by AVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about *'real time'* power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.
- 6. Approximately 20 lakh consumers at these 732 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- 7. Total cost of the scheme comes around 222.37 cr. for which detailed cost estimated have been enclosed with the DPR.

Detailed Project Project (DPR) is placed as Annexure-A.

Appraisal by the STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd. (RVPNL))-

RVPNL understands that proposal by AVVNL to install 732 Nos. of capacitor banks at 11 kV side on their 33/11 kV substations in technically and financially justified.

As per the order of Rajasthan Electricity Regulatory Commission (RERC) dated 24.03.2001, 50% of the total MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). (Copy of the order enclosed as Annexure-B).

Further, The clause no. 11.4 of Rajasthan Electricity Grid Code, 2008 states that "The DISCOMs shall participate in voltage management by providing Local VAR compensation as far as possible, in low voltage system close to load points not depending on EHV Grid for reactive support." (Copy of the clause enclosed as Annexure-C).

This project report proposes installation of approx. 1465 MVAR which is justified given their target of 1660 MVAR for operational reliability and effective voltage control. Thus, as per appraisal of RVPN (STU), this scheme is technically & commercially justified. (Appraisal by STU in Format-A5 has been enclosed as Annexure-D).

III

The agenda is hereby placed before NRPC for approval, after appraisal of RVPN (STU) in Annexure A5 of following scheme for further submission to NLDC-PSDF for availing 90% grant:

S.	Scheme details	Estimated Amount
No.		(Rs. In Cr.)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV	222.37
	Substations of Ajmer Vidyut Vitran Nigam Limited (AVVNL)	

SUMMARY OF PROPOSAL

Format A1 Page 1 of 1

For Official Use - To be filled by the Nodal Agency

Project Proposal Number : _

Date of Receipt : ____

	_	To be filled by the Requ	esting Organization / Project Entity	
1.	Na	ame of the requesting Organization / Utility ;	Ajmer Vidyut Vitran Nigam Limited	
2.	Sł	nort Summary of Project / Scheme / Activity		
	a.	Name and location of the Project / Scheme / Activity :	Provision of 11 kV Dynamic/ Automatic Switched Capacitor Bank at various 33/11 kV Sub-stations	
	b.	Objective of the Project / Scheme / Activity :	To improve power factor and hence reduce reactive current (reduction of T&D Loss), improvement in voltage profile, reduction in demand at various 33/11 kV Power Transformer	
	C.	Authorized Person For this Project / Scheme / Activity	Name : Mr. M C Baldi (Add. Chief Engineer - Projects)) E-mail ID : ceprojectavvnl2022@gmail.com Land line No : -NA- Mobile No. Mobile No. : +91-95303 90999 Fax No : NA	
	d.	Nature of the Project / Scherifie / Activity: Inter - State / Intra - State (Please Specify)	Inter State	
	e.	Identified Beneficiaries	Rajasthan State (in particular) & Nation (in general)	
	f,	Merits of the scheme	With implementation of the scheme , overall redundancy in the system will be provided.	
	g .	Limitations, if any	No limitation envisaged .	
-	h.	Time frame for Implementation	The scheme is scheduled to be completed within 15 months progressively from date of receipt of sanction of grant/ fund.	
	L	Estimated Cost of Project / Scheme / Activity	Rs 222.37 Crores	
	j. •	Category under which the project is classified (Please refer Para 5.1 of the Guidelines/Procedure)	5.1 (b) of Guidelines/ Procedure (PSDF)	

Algel: Signature:

Name: M C Baldi

p.

(Authorized Representative)

PSDF Project Proposal

Date:

08 SEP 2022

DETAILED PROPOSAL (DP)

1. Details of the Requesting Organization / Project Entity

Format A2 Page 1 of 4

1.1 Details of Organization / Entity

Name of Organization / Entity	Ajmer Vidyut Vitran Nigam Limited
Acronym or Abbreviation (if applicable)	AVVNL

1.2 Details of Head of the Organization

Name (Mr / Ms / Mrs)	Mr. N S Nirwan
Designation	Managing Director, AVVNL, Ajmer, Rajasthan
E-mail Address	md.avvnl@rajasthan.gov.in
Landline No.	0145-2644551
Fax No.	-NA-
Address	Vidyut Bhawan, Panchsheel Nagar, Makarwali Road, Ajmer (Raj)
City	Ajmer
Postal Code	305001

1.3 Details of Project Incharge/ Project Manager (Authorized Person) for this project/ scheme/ activity (Not below the rank of Dy. General Manager/ Superintending Engineer)

Name (Mr / Ms / Mrs)	-Mr. M C Baldi
Designation	Add. Chief Engineer - Projects
E-mail Address	-ceprojectavvnl2022@gmail.com
Landline No.	NA
Mobile No.	+91-95303 90999
Fax No.	•
Address	Vidyut Bhawan, Panchsheel Nagar, Makarwali Road, Ajmer (Raj)
City _	Ajmer
Postal Code	

Any Change in above mentioned details may be notified to the Nodal Agency of PSDF immediately.

2. Justification of the Proposal

2.1 Analysis of the Objective

Rajasthan is the largest state in the country, in terms of area, spreading across 3,42,239 Sq. km, which is 10.41% of the nation area. The total population of Rajasthan is nearly 8.1 Crores spread across 33 Districts, of which 75% is rural population. The density of population in Rajasthan is 200 per sq.km which is much lower than the national average of 382 per sq.km. The state is, predominantly, an agrarian society with majority (45%) of the population depending on agriculture activities as source of income, which accounts for around 29.5% of Gross State Domestic Product (GSDP).

Due to this spread of population, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; however, the intensive power is too supplied to the domestic, non-domestic and industrial sector. It has been identified that these loads are highly inductive in nature which need rectification. In this regard, AVVNL has proposed to install dynamic/ automatic capacitor bank under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawal of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.

Under AVVNL Discom, efforts have continuously been made to provide requisite reactive power compensation; however, the challenge associated with low voltage at the load end and drawl of heavy reactive power from the grid still persists due to fast growing load demand. Additionally, it has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, the provision for the installation of shunt capacitor has been proposed at various circles having power factor less than 0.85 so that it would result in following advantages as stated below.

1. Advantages to the Consumers

- A substantial reduction in the power cost, due to reduced kVA demand and elimination of penalty for low power factor (where tariff is based on kVA demand).
- Reduced over-loading means reduced losses and less heating in consumer's equipments, such as, cables, motors etc.
- A more stable voltage, which means a better and more efficient performance of the motors.
- Connection of more consumers' equipment to the same installation.

2. Advantages to Power Supply Utility

- Reduction of losses in lines and transformers.
- Release of power system capacity enables additional load to be connected on the same system without capital investment on additional equipment.
- Improvement in Voltage Level.
- Reduction of over loading means less heating of cables, conductors, transformers etc.
- A better utilization of the capacity of the generators, transformers, switchgear, cables, lines, etc., means increase in efficiency of the system.
- Reduced depreciation charges on capital outlay and less capital investment.
- Reduced reactive power drawn charges to NRLDC.

3. Reduction of Overall Technical & Commercial Losses

2.2 Identified Beneficiaries of the Project

Adequate reactive power compensation offered salient benefits to the power system which includes voltage regulation (i.e., voltage control within acceptable limits), system power losses reduction brought about by power factor improvement and it increases the utilization of connected equipments at the consumer end, improves reliability of transmission system and more importantly efficiency of real power made available at the consumer end. Hence, the identified beneficiaries of the project shall be (a) Rajasthan State (in particular), including Rajasthan Rajya Vidyut Prasaran Nigam Limited & Ajmer Vidyut Vitran Nigam Limited (Approx. 20 Lakhs Consumers under 12 Circles) and Nation (in general).

2.3 Identified Source of Funding

90% of the total project cost estimate is to be funded through grant from PSDF, balance amount will be contributed from internal resources.

2.4 Details of Activities for Project/ Scheme/ Activity

After getting approval of the project towards funding, the following activity will be undertaken to achieve desired results:

- Identification of phases (I & II) based on total number of 33/11 kV sub-stations and approved/ sanctioned amount.
- 2. Formulation and conduct of tendering process on turnkey basis and from reputed manufacturer.
- 3. Issuance of Lol/ LoA/ work order to L1 (lowest) bidder/ contractor/ vendor etc.
- Placement of erection & commissioning order.
- 5. Regular monitoring & controlling of technical and financial aspects.

The project incharge/ project manager/ area manager in the rank of superintending engineer will supervise the overall project work in their respective jurisdiction, further progresses of work are being reviewed monthly at head quarter by the Manging Director, AVVNL with representation from all authorised person.

2.5 Executing Agency

The project will be implemented at different 33/11 kV sub-stations located at different circles under AVVNL jurisdiction, as such it will be implemented by contracting agency to whom work order is awarded.

2.6 Timeline for Implementation of Project/ Scheme/ Activity

Timeline for implementation of the proposed project/ scheme is provided below under considering date of receipt of PSDF grant approval as 'Zero Date':

- 1. Finalization of Tender Documents & Issuance of Work Order: 03 Months
- Procurement, Installation, Commissioning & Testing of Equipments: 12 Months (Progressive Basis)
- 3. Cost Benefit Analysis & Report Submission on Improved Power Factor: Last Month

Timeline of the Project/ Scheme/ Activity							
Duration of Project (in Months)	15 Months (3 Months - Preparation + 12 Months - Implementation)						
Likely Start Date	Date of Receipt of Approval from PSDF Funding						
Likely Completion Date	31 October 2023						

		Τ	De	taile	d Ti	meli	ne c	of the	e Pr	ojec	t/Se	her	se//	Activ	ity	
2				F	Y 20	22-2	3			1	100	FY 2	2023	-24		
Sr. No.	Description	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	1un-23	Jul-23	Aug-23	Sep-23	001-23
in	alization of Tender Documents & Issuance of Work Order			_	_				_	_			-	-		_
1	Project Approval															
2	Conduct of Committee Meeting	100														
3	Preparation & Release of Tender Document	10														
4	Evaluation, Contract Award and Mobilization															
Pro	ocurement, Installation, Commissioning & Testing of Equipments	_	_	_	_	_	_	_	_	_	_	_	_	_		_
5	1st Disbursement (30% of Grant)				01											
6	Procurement, Installation, Commissioning & Testing of Equipments				22	1			ne.	TAN		And	٢			
7	Bi-monthly Review Meeting												1010			
8	Monthly Report Submission					-			223							
9	2nd Disbursement (60% of Grant) i.e. After Utalization of 30% Grant + 10% Self-contribution (JVVNL)						02									
Co	st Benefit Analysis & Report Submission on Improved Power Factor	-	_	_		_		_	_	_	_	_	_	_	_	-
	Final Report Submission															
11	3rd Disbursement (10% of Grant) i.e. On Completion of Scheme															D

08 SEP 2022 Date: _

Signature: Algeld

Name: M C Baldi (Authorized Representative)

Format A3 Page 1 of 3

Summary of Detailed Project Report (DPR)

The scheme is to provide an effective control of capacitor bank installations in sub-stations to maintain power factor under varying load conditions, for any sub-station load on transformer changes during a 24 hours daily load cycle. This variation of load depends upon type of load i.e. urban, rural, agricultural, industrial load etc. The load pattern will be different for different loads. Thus, load variation will follow certain pattern, and which could be divided into four or six periods in a 24 hours daily load cycle. Power factor would also vary and at the same time actual requirement of Capacitors in circuit will also vary. If steps are provided with capacitor banks to switch them as required, it will help the Electricity Supply Authority to maintain the power factor at desired level throughout the day. This load variation has been observed to change from 8% to 100%.

Outdoor type H.T. capacitor bank with facility of automatic switching of required number of steps with the help of capacitor switch. The bank comprising of externally Single Star Connected Capacitor Bank, 0.2% Series Reactors for switching inrush current suppression at neutral end, Vacuum Contactor for capacitor switching, HRC Fuses, RVT for unbalance protection and CRCA cubicle panel to accommodates all components stated above.

Hence, AVVNL Discom has finalized and decided to install dynamic/ automatic capacitor bank on the various MVA ratings power transformer installed at various 33/11 kV sub-stations. The detailed list on which work will be carried out is enclosed under Annexure – 'I' of DPR.

Sr. No.	Transformer Capacity (In MVA)	Proposed Quantity (In Nos.)		
1	3.15/ 5	719		
2	8	13		
	Total	732		

Summary of DPR given - Yes Copy of the DPR attached – Yes

Format A3 Page 2 of 3

Cost Break-up of Sub-station Equipment

Name of the Substation : -NA-

Sr. No.	Description of the Equipment to be replaced (rating, type)	Unit (Nos./Set)	Quantity	Rate including taxes	Total	Spares	Erection/ Civil Works	Total
400 kV			-NA-					
220 kV			-NA-			2		

Note : One table for each substation

		Abstrac	t Cost Estimate S	ub-station (Rs. In	Lacs)	15
Sr. No.	Description of Equipment	Sub-station Name-1	Sub-station Name-2	Sub-station Name-3		Total
400 kV			-NA-			<i></i>
220 kV		1.000	-NA-			

Details of Existing Equipment

Name of the Substation : -NA-

SI. No.	Name of Feeder	Equipmen t Name	Year of Manufact uring and make	Date of Commissi oning	Voltage	No. of cores available (in case of CT/PT)	Type of insulation /operatio n	Tagged for replace ment (yes/no)	Reas on for repla cem ent
400 k	v			-N	IA-	1			
220 k	V			-N	IA-				

Note : One table for each substation

		Abstr	act Quantity Estim	ate Sub-station			
Sr. No.	Description of Equipment	Sub-station Name-1	Sub-station Name-2	Sub-station Name-3	÷.		Total
400 k	v		-NA-			<u>.</u>	54
220 k	v		-NA-				

Format A3 Page 3 of 3

Implementation Schedule/ *Milestones

Particular	Total	Quarter 1	Quarter 2	Quarter 3	Quarter 4
1980 kVAr	719	250	200	150	119
3168 kVAr	13			-	13

For Financial Milestone

Particular	Total (Rs. Cr.)	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Power Factor Improvement Cost	222.37	75.72	60.58	45.43	40.64

*Note: The above implementation schedule/ milestones are tentative and may vary during the tender period.

08 SEP 2022 Date:

Signature: Alaldi

Name: M C Baldi (Authorized Representative)

Format A4 Total Page 3

Financial Implication of the Scheme

(Guidelines: The financial implications of the proposal may be worked out as accurately as possible and should be detailed in this section. Further, the manner in which the expenditure is proposed to be borne may also be clearly indicated. Please provide the project cost estimate for its scheduled duration along with a break-up of year-wise, component-wise expenses segregated into non-recurring and recurring expenses.)

1. Summary

S.No.	Item	Amount (Rs. Cr.)	
1.	Total Cost Estimate	222.37	
2.	Funding Proposed from PSDF	200.13	
3.	Contribution from Internal Sources	22.24	
4.	External Borrowings	-NIL-	

2. Details

2.1 Cost Estimate

Cost break-up of 11 kV Switched Capacitor Bank at 3.15 / 5 MVA Power Transformer

SI. No.	• Name of Items	Unit	Qty.	Unit FOR Destination Supply Prices including GST (Rs.)	Unit Erection & Maintenance Charges Incl. GST (Rs.)
1	2	3	4	5	6
	12.65 kV, 1980 kVAr , 3-Phase, 50 C/s housed in Outdoor Type CRCA Panel, Capacitor Bank having two variable step of 792 kVAr & one variable steps of 396 kVAr. Bank shall be complete with capacitor units of 264/132 kVAr, aluminium busbars, pin & post insulators, HRC fuses, surge arrestor etc. with details as under.	Nos.	1	17,50,000 ,	5, 50,000
	11 kV, Aluminum Wound, Dry type Ser	ies Read	tors		
a)	0.26 kVAr for 396 kVAr step	Nos.	3		
b)	0.52 kVAr for 792 kVAr step	Nos.	6		
c)	11 kV, 3-Phase dry type RVT	No.	1		
d)	12 kV 3 Phase Indoor type metal enclosed Vacuum Capacitor Switches.	Nos.	3		

e)	Indoor Type Automatic Control Unit	No.	1		
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1		
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure.	No.	1	40,000	5,000
1	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	15,000	2,000
•	Control cables, lugs/thimble, Junction Box etc.	Set	1	35,000	
	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	18,770	5,000
,	Heat Shrinkable Jointing kit for 11 kV 3	x185 Sq	. mm. XL	PE Cable	
)	Indoor termination kit	No.	2	12,000	5,000
)	Outdoor termination kit	No.	2	12,000	5,000
,	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar.	No.	1	3,80,355	40,000
8	Casting of Civil foundation	Set	1		75,000
)	Cable trench for laying of power/control cables.	Rmt	25		4,000
0	Earthing for Panel and LAs by pipe in pipe earthing	Nos.	2	•	25,000
1	24 Volt Battery with Battery Charger	No	1	50,000	
		Т	OTAL	23,13,125	7,16,000
	Grand Total (In Words: Thirty Lakhs T	wenty N		usand One Hundred y Five Rupees Only)	30,29,125

Cost break-up of 11 kV Switched Capacitor Bank at 8 MVA Power Transformers

SI. No.	Name of Items	Unit	Qty.	Unit FOR Destination Supply Prices with all taxes Supply (Rs.)	Unit Erection & Maintenance Charges Incl. Service Tax (Rs.)
1	2	3	4	5	6
1	12.65 kV, 3168 kVAr , 3-Phase, 50 C/s housed in Outdoor Type CRCA Panel, Capacitor bank having three variable step of 792 kVAr & two variable steps of 896 kVAr. Bank shall be complete with Capacitor units of 264/132 kVAr, Aluminum busbars, Pin & Post insulators, HRC fuses, Surge arrestor etc. with details as under. 11 kV, Aluminum Wound, Dry type Serie		1	22,15,000	5, 70,000

	0 50 MM - 6 - 700 MM - 100	Nos.	9		
a)	0.52 kVAr for 792 kVAr step				
o)	0.26 kVAr for 396 kVAr step	Nos.	6		
)	11 kV, 3-Phase dry type RVT	No.	1		
1)	12 kV 3 Phase Indoor type metal enclosed Vacuum Capacitor switches.	Nos.	4		
:)	Indoor Type Automatic Control Unit	No.	1		
f)	IP 55, Outdoor CRCA cubicle Panel for accommodating capacitors, Series Reactor, Vacuum contactor, Surge arrestor, Fuses along with Canaopy	Set	1		
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure.	No.	1	40,000	5,000
3	9 kV, 10 kA Station Class, Lightning Arrestors	Nos.	3	15,000	2,000
4	Control cables, lugs/ thimble, Junction Box etc.	Set	1	35,000	•
5	11 KV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	18,770	5,000
6	Heat Shrinkable Jointing kit for 11 kV 3	x185 Sq	. mm. XLI	PE Cable	
a)	Indoor termination kit	No.	2	12,000	5,000
b)	Outdoor termination kit	No.	2	12,000	5,000
7	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar.	No.	1	3,80,355	40,000
8	Casting of Civil foundation	Set	1		90,000
9	Cable trench for laying of power/control cables.	Rmt	25	-	4,000
10	Earthing for Panel and LA by pipe in pipe earthing	Nos.	2		25,000
11	24 V Battery with Battery Charger	No	1	50,000	-
	* · · · · · · · · · · · · · · · · · · ·		TOTAL	27,78,125	7,51,000
G	irand Total (In Words: Thirty-Five Lakhs T	wenty f	Nine Thou Twent	usand One Hundred y Five Rupees Only)	35,29,129

- 3. Funding
 - 3.1 Funding Proposed from PSDF as grant: Rs. 200.13 Cr.
 - 3.2 Contribution from Internal Sources: Rs. 22.24 Cr.
 - 3.3 External Borrowings: -NIL-

Signature: Offald;

Name: M C Baldi (Authorized Representative)

Date: 08 SEP 2022

Format A5 Page 1 of 1

Brief Details of the Project Appraisal by CTU/STU/RPC

Item	Details to be fill	ed by Applicant Utility
Appraisal By:	CTU STU RPC	
Date of Submission to CTU / STU / RPC for approval	-	
Name of the Scheme	Installation of Capacitor Banks on 11 kV Power Compensation under Power Syste	Side of 33/11 kV Substations for Reactive m Development Fund (PSDF)
Details of the Appraisal Report by CTU / STU / RPC (Attached at Annexure)	Reference. No : Date:	
	Summary of Proposal Appraised	
5	Technical Observations	
Summary of observations	Financial Observations	-
from CTU/ STU/RPC Appraisal Report	Compliance of Grid Standards / Codes by the Applicant	
white and the second	Limitations / Shortcomings pointed out by CTU/STU/RPC if any	
	Recommendations of CTU/STU/RPC	

Abaldi; Signature: _

Name: M C Baldi (Authorized Representative)

Date:

08 SEP 2022

Format A6 Page 1 of 1

UNDERTAKING

(On a Non-judicial Stamp paper of Rs. 50 only duly notarized and attested)

I, Mr. Mukesh Chandra Baldi son of Shri <u>Mk</u> Add resident of 701, CMD Tower, Civil Lines, Ajmer Rajasthan and presently working as Add. Chief Engineer (Projects) in the Ajmer Vidyut Vitran Nigam Limited, Jaipur (Rajasthan) hereby undertake to comply with the following terms and conditions with regard to funding of the "Installation of Capacitor Banks on 11 kV Side of 33/11 kV Substations for Reactive Power Compensation under Power System Development Fund (PSDF) (name of the scheme) with disbursement from PSDF:

- No tariff shall be claimed for the portion of the scheme funded from PSDF.
- Amount of grant shall be refunded in case of transfer/ disposal of the facility being created under this
 proposal to any other scheme for funding.
- Shall specifically mention if for the scheme under the proposal, the grant from any other agency is being taken/ proposed to be taken.
- The grant shall be refunded back to PSDF in case of non-utilisation of the grant within one year of release of instalment.

plache Signature:

Name: M C Baldi (Authorized Representative)

·----

PSDF Project Proposal

Date:

08 SEP 2022

AJMER VIDYUT VITRAN NIGAM LIMITED Corporate Identification Number (CIN)- U40109RJ2000SGC016482

Regd. off. Vidyut Bhawan, Panchsheel Nagar, Makarwali Road, ajmer-305004 Office of the Add. Chief Engineer (Projects)

Phone:- 0145-2644551, Email Id:- ceprojectavvnl2022@gmail.com, Website -http://energy.rajasthan.gov.in/avvnl

No. AVVNL/ACE(Projects)/Ajmer/F.PSDF/D- 595 Dt. 08 SEP 2022

Sh. Debasis De Executive Director, NLDC Member Secretary of the Appraisal Committee of PSDF Power System Operation Corporation Ltd. B-9, Qutub Institutional Area, Katwaria Sarai, New Delhi-110016

Sub: Submission of DPR for installation of dynamic/ automatic Capacitor Banks on 11 kV Side of selected 33/11 kV sub-stations of AVVNL under Power System Development Fund (PSDF Scheme)

Kindly find enclosed herewith the DPR for installation of dynamic/ automatic Capacitor Banks on 11 kV Side of selected 33/11 kV sub-stations of AVVNL under Power System Development Fund (PSDF Scheme) amounting to Rs 222.37 Cr for your further needful at your level and fund approval.

The DPR has been approved by the Board of Directors (BoD) of AVVNL.

Enclosed: Approved DPR in original

(M C Baldi)

Add. Chief Engineer (Projects) AVVNL, Ajmer

Copy submitted / forwarded to the following:

- 1. The TA to Chairman Discoms for kind perusal of Chairman Sb.
- 2. The TA to Managing Director, AVVNL, Ajmer for kind perusal of MD Sb.
- 3. The PA to Director (Tech/Fin), AVVNL, Ajmer for kind perusal of Director Sb.

Add. Chief Engineer (Projects) AVVNL, Ajmer

Detailed Project Report

ANNEXURE 'B'

DETAILED PROJECT REPORT (DPR) FOR

System Improvement Scheme

Installation of Capacitor Banks on11 kV Side of 33/11kV Substations for Reactive Power Compensation under Power System Development Fund (PSDF) – Phase 'I'

Estimated Cost: Rs. 222.37 Cr.

AJMER VIDYUT VITRAN NIGAM LIMITED

Corporate Identification Number (CIN): U40109RJ2000SGC016482 Office of the Add. Chief Engineer (Projects) VidyutBhawan, Panchsheel Nagar, Makarwali Road, Ajmer-305004

Email -ceprojectavvnl2022@gmail.com

Website:www.energy.rajasthan.gov.in/avvnl

DETAILED PROJECT REPORT

Page 1 of 16

Detailed Project Report

INTRODUCTION

Rajasthan is the largest state in the country, in terms of area, spreading across 3,42,239 Sq. km, which is 10.41% of the nation area. The total population of Rajasthan is nearly 8.1 Crores spread across 33 Districts, of which 75% is rural population. The density of population in Rajasthan is 200 per sq.km which is much lower than the national average of 382 per sq.km. The state is, predominantly, an agrarian society with majority (45%) of the population depending on agriculture activities as source of income, which accounts for around 29.5% of Gross State Domestic Product (GSDP).

Due to this spread of population, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; however, the intensive power is too supplied to the domestic, non-domestic and industrial sector. It has been identified that these loads are highly inductive in nature which need rectification. In this regard, AVVNL has proposed to install dynamic/ automatic capacitor bank under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawal of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.

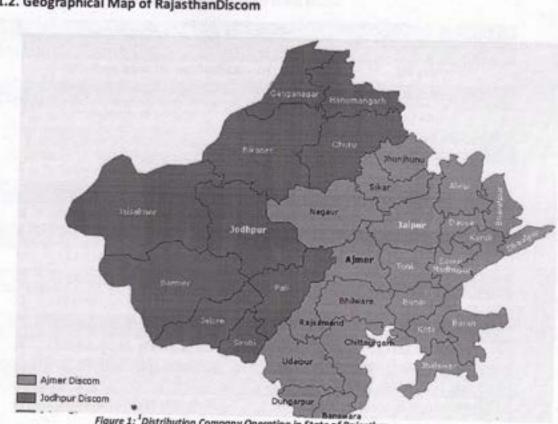
Under AVVNL Discom, efforts have continuously been made to provide requisite reactive power compensation; however, the challenge associated with low voltage at the load end and drawl of heavy reactive power from the grid still persists due to fast growing load demand. Additionally, it has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, the **provision through submission of detailed project report has been proposed at various circles having 'power factor less than 0.85'**. The report shall consist of brief background of AVVNL Discom, geographical maps, operational profile, objective, beneficiaries, recent initiatives, technology, cost estimates, timeframe, success criteria etc.

Halt

Page 2 of 16

Detailed Project Report

OUR PROPOSAL


1. BACKGROUND

1.1. Introduction

Ajmer Vidyut Vitran Nigam Limited (AVVNL) is a public utility company under the Department of Energy, Government of Rajasthan and is holder of the distribution and retail supply business licenses in the State of Rajasthan (hereafter referred as "DISCOM"). The Distribution Company came in to existence on 19 July 2000 pursuant to the "Rajasthan Power Sector Reforms Transfer Scheme, 2000" and restructuring undertaken in the State under which the vertically integrated Electricity Board (Rajasthan State Electricity Board) was unbundled and the power generation, transmission and distribution business was segregated to form 05 successor companies viz.

- a) Rajasthan Rajya Vidyut Utpadan Nigam Limited (RVUN) to manage the electricity generation business of erstwhile RSEB.
- b) Rajasthan Rajya Vidyut Prasaran Nigam Limited (RVPN) to manage the electricity transmission and bulk supply business of erstwhile RSEB.
- c) Ajmer Vidyut Vitran Nigam Limited (AVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Ajmer City Circle, Ajmer District Circle, Bhilwara, Nagaur, Jhunjhunu, Sikar, Udaipur, Chittorgarh, Rajsamand, Banswara, Pratapgarh and Dungarpur Circles.
- d) Jaipur Vidyut Vitran Nigam Limited (JVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Alwar, Bharatpur, Jaipur City, Jaipur District, Dausa, Kota, Jhalawar, Sawai Madhopur, Bundi, Baran, Tonk, Karauli and Dholpur Circles.
- e) Jodhpur Vidyut Vitran Nigam Limited (JdVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Sriganganagar, Hanumangarh, Churu, Bikaner District, Bikaner City, Jaisalmer, Jalore, Barmer, Jodhpur City, Jodhpur District, Sirohi, Jalore, and Pali Circles.

Page 3 of 16

1.2. Geographical Map of RajasthanDiscom

Ajmer Vidyut Vitran Nigam Limited

Figure 1: ¹Distribution Company Operating in State of Rajasthan

All the 03 Discoms have been established with the principal object of engaging inthe business of distribution and supply of uninterrupted and reliable quality electricity in differentdistricts (JVVNL - 12 Nos., AVVNL - 11 Nos. & JdVVNL - 10 Nos.) of Rajasthan. In view of above geographic locations, the proposal will mainly focus on'Installation of Capacitor Bank at the 11 kV Side of various 33/11 kV sub-stations' under various Circles of Ajmer Discom.

1.3. Operational Profile

The AVVNL Discom is responsible for operating the distribution assets within the areaofAjmer, Bhilwara, Nagaur, Jhunjhunu, Sikar, Udaipur, Chittorgarh, Rajsamand, Banswara, Pratapgarh and Dungarpur districts. Its scope of work and the electricity network (as on Mar22)are as presented below.

Source: https://energy.rejasthan.gov.in/content/raj/energy-department/en/departments/avvnl/knowledge-base/discom-map.html

Platd.

Page 4 of 16

Detailed Project Report

Detailed Project Report

Sr. No.	Parameters	AVVNL
1	Area of Operation	87,256 Sq. KM
2	Total Population (As per 2011 Census)	229 Lakhs
3	Total Number of Consumers	54.73 Lakhs (Regular)
4	Total Number of Villages	15379 Nos.
5	Electrified Villages	15272 Nos. (The balance 107 Nos. villages are unpopulated)
6	Circles	12 Nos.
7	33/11 kV Sub-stations	1974 Nos.
8	MVA Capacity of 33/11 kV Power Transformer	10276.70MVA
9	33 kV Line	16821.30 KM
10	11 kV Line	162143.59 KM
11	11 kV Feeders	9443 Nos.
12	LT Line	199117.66 KM
13	11/0.4, 6.35/0.24 kV Sub-station	537494 & 185452 Nos.
14	MVA Capacity of Distribution Transformer	17713.45MVA
15	Load Profile (LV) based on MU	Agriculture & Domestic loads are predominating
16	Load profile (HV) based on MU	Industrial & Non Industrial, Agriculture, Residential and Commercial

Table 1: Operational Profile of AVVNL Discom

Further, in terms of electrical connectivity, the AVVNL Discom is connected to Rajasthan Rajya Vidyut Prasaran Nigam Limited network at 33kV & 11kV levels. Also, there are few interconnection points with other Discoms.

1.4. Customers Profile

Discom currently serves about 5473245 regularconsumers with a total connected load of around 1,44,21,291 kW under the LT & HT categories of consumers. Hence, category wise break-up of total number of consumers with connected Load as on March 2022 is stated below:

lald

Page 5 of 16

Detailed Project Report

Gategory (LT)	Contramentation (State)	Contracted London W
Domestic	4393918	3943062
Non Domestic	392589	1527874
PSL	6851	138677
Agri (M)	579349	3973100
Agri (F)	453	5341
Agri (P)	1512	9385
SIP	50619	386441
MIP	10414	630158
LIP	5398	3413773
SIP(WW)	22314	164336
MIP(WW)	321	15829
LIP(WW)	197	80542
Mixed Load	9301	91520
EV	4	55
Railway Traction	5	41198
Total	54,73,245	1,44,21,291

Table 2: Customer Profile for LT&HT Consumers of AVVNL Discom

2. PROJECT OBJECTIVE

AVVNL believes that there is a need for a consistent and long lasting solution in order to improve & strengthen the Power Distribution Network with minimum losses in the long run. Also, the distribution system has suffered various challenges such as (a) Unbalanced Load Flow; (b) High Level of Technical Losses; (c) Less System Stability; (d)Poor Voltage Regulation; (e) Low Power Factor; (f) Low Consumer Satisfaction Level etc. which need to be gradually resolved. In this regard, AVVNL is taking up Integrated Planning for Distribution System covering the Renovation & Modernization of the overall network. This will enable relieving congestion and improving the voltage profile at the load end.

"Government of India has finalized the scheme/ guidelines for operationalization of PSDF dated 10.01.2014. The provision consists of 'Installation of Shunt Capacitors, Series Compensators and other Reactive Energy Generators including Reactive Energy Absorption, Dynamic Reactive' support etc. for improvement of voltage profile in the Grid".

Hence, this report aims to provide detailed information relating to the project for which PowerSystem Development Fund for current year sought by the AVVNL. The keyactivity identified is to improve power distribution system with the installation

Abelle

Page 6 of 16

Detailed Project Report

of1980kVAr&3168kVArDynamic/ Automatic Capacitor Bankat the selected 11kV Side of33/11 kV Sub-stations within the respective Circle/ Division/ Sub-division which could be possible with the Power System Development Fund (PSDF).

Power Factor	Circle	Division	Sub Division	Total 33/11 kV Substation	Feeder Count	Proposed Transformer Capacity (MVA)	Power Transformer Count (Nos.)
Less than 0.85	12 39	127 222	1000	3.15/5	719		
		39 127	732	1888	8	13	
			1			Total (In Nos.)	732

Table 3: Project Estimation for Installation of Capacitor Bank under AVVNL Discom

3. METHODOLOGY ADOPTED

The methodology as followed by AVVNL, for identification of low power factor (i.e. below 0.85) is as stated below.

- a) AVVNLDiscom has developed a Feeder Monitoring System (FMS)in order to have a 'Real Time'power supply status of 11 kV feeders including installation status, power quality, system reliability, issue tracker, block hours supply, power factors, loan analysis, energy audit, tamper details etc.
- b) With the support of RFMS, the review reports consisting of 'Power Factors Less than 0.90' has been downloaded for the last 01 year (*i.e. from May 2021 till April* 2022).
- c) Analysis were carried-out on thePower Factor, Maximum Current (In Amp.) & Peak Load (In kW) at the various zone, circle, division, sub-division, 33/11 kV substations, 11 kV feeders including its transformational capacity (In MVA).
- d) The average power factor for the 12 months were calculated and finalized for 12 circles which is enclosed under Annexure 'I'.

Page 7 of 16

Detailed Project Report

e) Further, the automatically generated data are reliable enough for consideration however, AVVNL has taken initiative andfinalized data were cross-checked on a sample basis at the various division/ sub-divisions levels.

4. BENEFICIARIES

Adequate reactive power compensation offered salient benefits to the power systemwhichincludes voltage regulation (*i.e. voltage control within acceptable limits*), system powerlosses reduction brought about by power factor improvement and it increases the utilization connected equipments at the consumer end, improves reliability of transmission systemand more importantly efficiency of real power made available at the consumer end. Hence, the major beneficiaries are as stated below.

- a) Rajasthan Rajya Vidyut Prasaran Nigam Limited
- b) AjmerVidyutVitran Nigam Limited(Approx. 20 Lakhs Consumers under 732 Nos. 33/11 kV Sub-stations of 12 Circles)

5. ON-GOING INITIATIVES

AVVNL is taking active participation for the supply of quality power without compromising the technical and commercial losses in the urban and rural areas. Some of the initiatives include village electrification, augmentation of transformational capacity, infrastructure development, privatizations through distribution franchisee, meterization, theft control, adopting schemes like Revamped Distribution Sector Scheme (RDSS), PM-KUSUM Scheme etc. Further, for the improvement of power factors at load end, AVVNL has installed approx. 195242 Nos. . of LT Shunt Capacitors (3 kVAr / 6 kVAr / 9 kVAr) till date. However due to smaller impact of power factor improvement, burning/ failure issue and theft of LT Shunt Capacitors have forced Discom to rethink and initiate the implementation of dynamic/ automatic capacitor bank at the various 11 kV side of the 33/11 kV sub-stations.

Apart from above, majority of the 11kV feeders in AVVNL are having high agriculture load which are being catered using 3.15/ 5 MVA power transformers at substations.Over the decade, Discom has witnessed a growth of around ~9% in connected load thus leading to increase in power demand. Also, Government of Rajasthan has mandated supply of day-time power (two blocks supply) to agricultural farmers. To meet this increase in demand and ensure day time supply to agriculture consumers,AVVNL need to augment its existing transformation capacities at Substation level (specifically from 3.15MVA to 5 MVA) within next 2 years. Hence, under this detailed project report, AVVNL has considered the upcoming requirement and proposed a capacitor bank with common rated capacity for 3.15/ 5 MVA.

Alad -

Page 8 of 16

Detailed Project Report

6. TECHNOLOGY

- a) For 11kV, 1980kVAr& 3168 kVArDynamic/ Automatic Capacitor Bank shall include 11kV Vacuum Circuit Breaker (VCB) Switchgear with complete arrangement with Adopter Panel for connection with existing 11 kV Bus Bar, Capacitor Switch, Reactor, APFC,Indoor Type Automatic Control Unit, Lightning Arrestor, Surge Arrestor, Pin & Post Insulators, PT's-CT's, Power &Control Cables, Junction Box, Supports of various types channels, Nut Bolts, Bus Bar Structure, Laying of Cables, Installation of Energy Meters, Interconnection ofVCB and C&R Panel, Battery with Batter Charger etc.
- b) The capacitor bank shall consist of variable steps of different kVAr(details shared under BoQ). All the capacitor unit shall be controlled through separate capacitorswitch and complete capacitor bank shall be protected through a VCB suitable forcapacitor duty.
- c) The rated voltage of the system will be not less than 12 kV and shall be carriedout under 3-Phase Power Supply; 50 Hz frequency level.
- d) The automatic power factor control unit shall continuously monitor power factor at11kV side of power transformer and automatically switched ON/OFF capacitorsunits in steps according to the requirement of KVAr to maintain the Target Power Factor(atleast 0.98).
- e) The automatic "power factor control unit shall be programmable and have datadownloading facility. Data Storage capacity of the control unit shall be at least for45 days with every 15 minutes data. The bidder shall have to provide two datadownloading instrument for data download from control unit with necessary BCS ineach Circles.
- f) The all display meters provided in the control panel shall be digital meters andshall be compatible for Automatic Meter Reading (AMR).
- g) There are no low voltage limit for tripping of capacitor bank main VCB or capacitorswitch. Also, the power factor control unit and relays provided for the protection of control unitshall be capable to store at least last 05 faults.
- h) All equipment and material shall be designed, manufactured and tested in accordancewith the latest applicable IS/IEC standards.
- The electrical installation shall meet the requirement of Indian Electricity Rules-1956/CEA safety Regulation 2010 as amended up to date; relevant IS code of

Algel

Page 9 of 16

Detailed Project Report

practiceand Indian Electricity Act-2003 in addition other rules and regulations as applicable to the work shall be followed.

Note: The above proposed technology is indicative only, detailed version will be a part of tender documents.

7. MANAGEMENT ARRANGEMENTS

The implementation plan for the project will be **15 months** from the date of approval from funding agency and shall be executed as per proposed plan. Further, the works under different activities shall be carried out on **turnkey basis** through international or national competitive bidding as per the guidelines of funding agency.

The project shall cover the overall procurement, installation, commissioning, testing and 05 years maintenance of dynamic/ automatic capacitor bank and will be divided into two phases (I& II) depending upon the total number of sub-station considered, area covered, time frame and available fund. Here, providing the estimate for 'Phase – I'.

8. COST ESTIMATES

The cost estimation of installation of 732 Nos. of Dynamic/ Automatic 11 kV Capacitor Bank under Power System Development Fund is stated below.

Sr. No.	Name of Work	Unit	Qty.	Unit Rate (Rs. Lakhs)	*Amount (In Rs. Cr.)
1	Installation of 1980 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning, testing and 05 years maintenance. (For 3.15/5 MVA)	Nos.	719	, 30.29	217.78
2	Installation of 3168 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning, testing and 05 years maintenance. (For 8 MVA)	Nos.	13	35.29	4.59

*Note: The above estimated cost is inclusive of applicable GST.

Alalde

Page 10 of 16

1.

Detailed Project Report

9. BILL OF QUANTITY (BOQ)

Cost break-up of 11 kV Switched Capacitor Bank at 3.15 / 5 MVA Power Transformer

SI. No.	Name of Items	Unit	Qty.	Unit FOR Destination Supply Prices including GST (Rs.)	Unit Erection & Maintenance Charges Incl. GST(Rs.)
1	2	3	4	5	6
1	12.65 kV, 1980 kVAr, 3-Phase, 50 C/s housed in Outdoor Type CRCA Panel, Capacitor Bank having two variable step of 792 kVAr & one variable steps of 396 kVAr. Bank shall be complete with capacitor units of 264/132 kVAr, aluminium busbars, pin & post insulators, HRC fuses, surge arrestor etc. with details as under.	Nos.	1	17,50,000	5,50,000
	11 kV, Aluminum Wound, Dry type Ser	ies Reac	tors	tente manuel	And the second
a)	0.26 kVAr for 396 kVAr step	Nos.	3	Manufacture Science	sal billions
b)	0.52 kVAr for 792 kVAr step	Nos.	6	Charles I	1000
c)	11 kV, 3-Phase dry type RVT	No.	1		
d)	12 kV 3 Phase Indoor type metal enclosed Vacuum Capacitor Switches.	Nos.	3		
e)	Indoor Type Automatic Control Unit	No.	1		
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1		
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure.	No.	1	40,000	5,000
3	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	15,000	2,000
4	Control cables, lugs/thimble, Junction Box etc.	Set	1	35,000	•
5	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	18,770	5,000
6	Heat Shrinkable Jointing kit for 11 kV 3	185 Sq.	mm. X	LPE Cable	
a)	Indoor termination kit	No.	2	12,000	5,000
b)	Outdoor termination kit	No.	2	12,000	5,000

place

Page 11 of 16

11

Detailed Project Report

	Grand Total (In Words: Thirty Lakhs Twenty Nine Thousand One Hundred Twenty Five Rupees Only)							
-	Tennes and the second	TOTAL 23,13,125						
1	24 Volt Battery with Battery Charger	No	1	50,000				
10	Earthing for Panel and LAs by pipe in pipe earthing	Nos.	2	(cal **	25,000			
9	Cable trench for laying of power/control cables.	Rmt	25		4,000			
8	Casting of Civil foundation	Set	1		75,000			
7	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar.	No.	1	3,80,355	40,000			

Cost break-up of 11 kV Switched Capacitor Bank at 8 MVA Power Transformers

SI. No.	Name of Items	Unit	Qty.	Unit FOR Destination Supply Prices with all taxes Supply (Rs.)	Unit Erection& Maintenance Charges Incl. Service Tax (Rs.)
1	2	3	4	5	6
1	12.65 kV, 3168 kVAr , 3-Phase, 50 C/s housed in Outdoor Type C&CA Panel, Capacitor bank having three variable step of 792 kVAr & two variable steps of 396 kVAr. Bank shall be complete with Capacitor units of 264/132 kVAr, Aluminum busbars, Pin & Post insulators, HRC fuses, Surge arrestor etc. with details as under.	Nos.	1	22,15,000	5,70,000
	11 kV, Aluminum Wound, Dry type Ser	-			
a)	0.52 kVAr for 792 kVAr step	Nos.	9		
b)	0.26 kVAr for 396 kVAr step	Nos.	6		
c)	11 kV, 3-Phase dry type RVT	No.	1		
d)	12 kV 3 Phase Indoor type metal enclosed Vacuum Capacitor switches.	Nos.	4		
e)	Indoor Type Automatic Control Unit	No.	1		
f)	IP 55, Outdoor CRCA cubicle Panel for accommodating capacitors, Series Reactor, Vacuum contactor, Surge arrestor, Fuses along with Canaopy	Set	1		

Alathe

Page 12 of 16

1.

Detailed Project Report

G	rand Total (In Words: Thirty-Five Lakhs Ty	wenty N		sand One Hundred y FiveRupees Only)	35,29,125
		and the second states	OTAL	27,78,125	7,51,000
11	24 V Battery with Battery Charger	No	1	50,000	
10	Earthing for Panel and LA by pipe in pipe earthing	Nos.	2		25,000
9	Cable trench for laying of power/control cables.	Rmt	25		4,000
8	Casting of Civil foundation	Set	1		90,000
7	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar.	No.	1	3,80,355	40,000
b)	Outdoor termination kit	No.	2	12,000	5,000
a)	Indoor termination kit	No.	2	12,000	5,000
6	Heat Shrinkable Jointing kit for 11 kV 3	x185 Sq	. mm. XL	PE Cable	
5	11 KV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	18,770	5,000
4	Control cables, lugs/thimble, Junction Box etc.	Set	1	35,000	•
3	9 kV, 10 kA Station Class, Lightning Arrestors	Nos.	3	15,000	2,000
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure.	No.	1	40,000	5,000

Plalte

Page 13 of 16

a.

Detailed Project Report

10. TIME FRAME PERT CHART

The total duration of the project is considered as 15 months. The tentative start date shall be considered as the date of receipt of approval from PSDF funding while the completion time is likely to by end of October 2023. The detailed time frame is presented below.

		L	De	rtaile	ed Ti	meši	ne o	of th	e Pr	roject/Scheme/Activity						
ė		FY 2022-23								FY 2023-24						
Sr. No.	Description	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22	lan-23	Feb-23	Mar-23	Apr-23	May-23	Mun-23	M-23	Aug-23	Sep-23	0ct-23
fina	lization of Tender Documents & Issuance of Work Order							_	_	_	_		-	_		1
1	Project Approval															-
2	Conduct of Committee Meeting	100	158				-									
3	Preparation & Release of Tender Document															-
4	Evaluation, Contract Award and Mobilization															-
ra	curement, Installation, Commissioning & Testing of Equipments				_	_		_		-	_	_	-	-	_	-
5	1st Disbursement (30% of Grant)				D1											
6	Procurement, Installation, Commissioning & Testing of Equipments				100-0	-		100	inel a	1853	Ne I	ALC: N	100	111	154	
7	Bi-monthly Review Meeting						10				1 00		177			
_	Monthly Report Submission									112				20		
	2nd Disbursement (60% of Grant) i.e. After Utalization of 30% Grant + 10% Self-contribution (JVVNL)						DB									-
ost	Benefit Analysis & Report Submission on Improved Power Factor														-	-
	Final Report Submission															
11	3rd Disbursement (10% of Grant) i.e. On Completion of Scheme													-1		03

11. SUCCESS CRITERIA&SUSTAINABILITY

To identify the success of any project, it is always necessary to evaluate the standards by which to examine whether the proposed objective, target or outcomes will be achieve or not. Hence, the **Cost-Benefit Analysis** for the 1980 kVAr &3168 kVAr ratings automatic capacitor bank on the 3.15, 5 & 8 MVA power transformer has been presented below.

Afell-

_												ank at 33/11 PF - 0.98 Initia			×
St. 180.	Transformer Rating (In MVA)	City	Total MVA		Average Loading	Average Demand (In MW) with 0.85 Power Factor	Reduction in MVA after Capacitors Bank	Loss Reductio		Total MWb Drawn in a Year	Saving in MWh	Cost of energy saved per annum (8 4.651- (2022- 21) per unit	Proposed 11 KV Automatic Capacitor Bank (h KVAr)	Supply, Installation & Maintenanc e for 05 Years Cost (In Lakts)	Total Cost (In Cr.)
_		-		80%	54%		0.96	2	20	S			51.14	for month	
۲	3.15	431	1358	1086	587	498.5291	508.70	24.77	4.95	4367115	216355	1,049,321,536	1960	30.29	130.54
2	5	288	1440	1152	622	528.768	538.56	24.77	4.95	4632006	229478	1,112,969,584	1980	30.29	87.24
3		13	104	63	45	38.1888	38.97	24,77	4.95	334534	16573	80,381,137	3158	35.29	4.5
				6	rand Tota	al			-	\$333656	462467	2,242,672,356			222.34

Page 14 of 16

Detailed Project Report

Payback Period	•	Approx. 12 Months
Total Savings with Power Factor Improvement	:	Rs. 224.26 Cr
Total Cost of the Project	:	Rs. 222.37 Cr.

"Further, regional entities are liable for weekly settlement of 'Reactive Energy Charges' in accordance with theCERC (Indian Electricity Grid Code)Regulations, 2010 and amendments thereof, which are sometimes payable or receivable.Due to poor power factor, sometimes Rajasthan accounts for a penalty at the rate of 10 paise/kVArh (from 03.05.2010 onwards)reactive charges with escalation factor of 0.5 paise/ kVArh. Also, recent provision of CERC's Draft Indian Electricity Grid Code 2022 recommends the reactive charge at the rate of 5 paise/kVArh w.e.f. the date of effect of final regulations with escalation at 0.5paise/kVArh per year thereafter".

Hence, the draft provision to rate reduction along with saving achieved through installation of capacitor bank will definitely lower down the overall penalty impact. These shall be the contributing factor for the Improvement of Financial Health of Discoms and will leading to a sustainable implementation structure.(*Note: The NRLDC charges is not taken into consideration in above payback calculation*).

Moreover, the capacitor units are used in these capacitor banks shall be manufactured with the latest design and tested to meet or exceed the requirement of applicable IEC & IS Standards, it israted in continuous kVAr, voltage and frequency for operating within the -200°C to +500°C ambient temperature range & shall be designed to produce not less than rated kVA at rated voltage and frequency.

Capacitors will operate safely at 135% of kVAr rating under followingcondition as:

- kVAr caused by excess at rated frequency.
- kVAr added by the harmonic voltage superimposed on the powerfrequency voltage.
- kVAr attributable to manufacturing tolerances.

The maximum recommended working voltage of capacitor is 110% of rated voltage. The capacitors include a safely factor that permits them to tolerate without damagemomentary over voltage caused due to switching/load fluctuation.

Thus, it is quite successful and sustainable in the high voltage system.

Alelle

Page 15 of 16

11

Detailed Project Report

ANNEXURE 'I'

List of Various 33/11 kV Sub-stations considered for Power Factor Improvement

Algelle

Page 16 of 16

S.N o.	NAME OF SUBSTATION	Installed Capacity (In MVA)	CIRCLE	DIVISION	SUBDIVISION
1	33/11 KV CHALLA	8.15	Sikar	NEEM KA THANA	KANWAT
2	33/11 KV GANESHWAR	3.15	Sikar	NEEM KA THANA	AEN RURAL NMKT
3	33/11 KV GANWADI MOD	7.5	Sikar	NEEM KA THANA	AEN RURAL NMKT
4	33/11 KV GOVINDPURA	3.15	Sikar	NEEM KA THANA	KANWAT
5	33/11 KV IA	13.15	Sikar	NEEM KA THANA	AEN O&M NEEMKATHANA
6	33/11 KV SIROHI	3.15	Sikar	NEEM KA THANA	AEN O&M NEEMKATHANA
7	AAKLA	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
8	Aarni	3.15	Chittorgarh	Kapasan	Rashmi
9	Abhaypura	3.15	Sikar	REENGUS	palsana
10	ACHINA	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
11	ADARSH NAGAR	10	Sikar	REENGUS	AEN (O&M) REENGUS
12	Adkaliya	3,15x1	Udaipur	XEN SALUMBER	Salumber (O&M)
13	AEN (O&M, Aspur)	3.15	Dungarpur	Sagwara	ASPUR
14	AEN (O&M, Bichhiwara)	3.15	Dungarpur	Dungarpur	MADA
15	AEN (O&M, Chithri)	3.15	Dungarpur	Sagwara	GHATA KA GAON
16	ajmeri	21	Sikar	SRIMADHOPUR	AEN O&M AJEETGAR
17	Akola	8.15 (3.15+5)	Chittorgarh	Kapasan	Bhopal Sagar
18	Akwa	3.15	Sikar	SIKAR RURAL	Kudan
19	Akya	6.3	Chittorgarh	Nimbahera	Bhadesar
20	Ambavli	6.3	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
21	Amlawad	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
22	ANANDPURI	6.3(3.15+3.1 5)	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
23	ANDESHWAR	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh
24	ANJANA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
25	anooppura	3.15	Chittorgarh	Bengu	Bengu
26	Anwalheda	8.15 (3.15+5)	Chittorgarh	Bengu	Bengu
27	Ardawata	3.15+3.15=6.	Jhunjhunu	Chirawa	Sultana

1

(A)

Page 1 of 24

		30			
28	Arniyajoshi	6.3	Chittorgarh	Nimbahera	Mangrol
29	Arnod	6.3	Pratapgarh	XE ONM PGH	AE ONM ARNOD
30	Arnoda	5	Chittorgarh	Nimbahera	Mangrol
31	ARTHUNA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
32	Aruka	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chirawa
33	Asawari	5	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
34	Asawata	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
35	Asliyo ki Madri	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
36	Babai	5	JHUNJHUNU	Khetri Nagar	Babai
37	Babalwara	3.15x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
38	Babarmal	3.15x1	Udaipur	XEN SALUMBER	Veerpura
39	babrana	3.15	Chittorgarh	Kapasan	Bhopal Sagar
40	Badabara	3.15	NAGAUR	DEEDWANA	AEN(O&M),CHOTI KHATU
41	Badgaon	3.15x1	Udaipur	XEN SALUMBER	Veerpura
42	BADGAUN/CHIDIYAW ASA	3.15	BANSWARA	BANSWARA	AEN (O&M-II), Banswara
43	badhalo ki dhani	3.15	Sikar	REENGUS	palsana
44	Badiyar	5x1	Udaipur	Xen Rural-I Udaipur	Mavli
45	BADODIYA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
46	Badoli ghata	3.15	Chittorgarh	Nimbahera	Nimbahera(O&M)
47	BADREL	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
48	Badsodha	8.15	Chittorgarh	Nimbahera	Bhadesar
49	Badsri ka Bass	3.17	Jhunjhunu	Chirawa	Surajgarh
50	Bagholi	3.15+2.5=5.6 5	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
51	BAGIDORA	6.3(3.15+3.1 5)	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
52	Bagriyawas	6.3	Sikar	SRIMADHOPUR	AEN O&M SRIMADHOPUR
53	Bagwas	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
54	Bakaliya	3.15	nagaur	Ladnun	AEN(Rural,ladnu)
55	Balaya	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
56	Baloda	5+5=10	Jhunjhunu	Chirawa	Surajgarh
57	Baluwa	3.15x1	Udaipur	Xen O&M Kherwada	Sarada
58	Bambori	8.15	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADE

All

15

11

÷

Page 2 of 24

12.1

59	Bamniya	8.15 (3.15+5)	Chittorgarh	Kapasan	Kapasan
60	Bangeda Ghata	5	Chittorgarh	Nimbahera	Mangrol
61	Bangothri	5+3.15+3.15 =11.30	Jhunjhunu	Chirawa	Pilani
62	Bansen	8.15	Chittorgarh	Nimbahera	Bhadesar
63	Bansi	10	Chittorgarh	Nimbahera	Badisadri
64	Bara barda	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
65	BARANGANA	3.15	NAGAUR	DEEDWANA	AEN(O&M),DEEDWAN A
66	Barapal	3.15x1	Udaipur	Xen Rural-I Udaipur	Girwa
67	BARBATTA	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
68	Bardiya	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
69	BARI	3.15	BANSWARA	BANSWARA	AEN(O&M), Chhoti Sarvan
70	Bari sakhathali	13.15	Pratapgarh	XE ONM PGH	AE ONM DALOT
71	Barkhedi	6.3	Pratapgarh	XE ONM PGH	AE ONM DALOT
72	BARNEL	3.15	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
73	Barotha	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
74	Barsuna	5	NAGAUR	DEEDWANA	AEN(O&M), ROLL
75	Barwadanaka	9.45	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADRI
76	Basad	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
77	Basawa	\$+3.15+3.15 =11.30	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
78	Basawta	3.15	JHUNJHUNU	Khetri Nagar	Khetri Nagar
79	Baseda	6.3	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
80	Basera	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
81	Bassi	6.30 (3.15+3.15)	Chittorgarh	Bengu	Bassi
82	Bathoth	8.15	Sikar	LAXMANGARH(O& M)	LAXMANGARH RURAL
83	Baydi	3.15x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
84	Beedasar	6.3	Sikar	LAXMANGARH(O& M)	LAXMANGARH(O&M)
85	Bengu	8.15 (3.15+5)	Chittorgarh	Bengu	Bengu
86	BENIWALO KI DHANI	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
87	BERATHAL	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
88	Berla	3.15	Jhunjhunu	Chirawa	Surajgarh
89	Besroli	3.15	nagaur	Makrana	AEN(O&M,Gachhipur

Page 3 of 24

APV

į.

٩.

					a)
90	Beswa	3.15	Sikar	LAXMANGARH(O& M)	FATEHPUR RURAL
91	BHAGORA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
92	BHAGWANPURA	3.15	Chittorgarh	Nimbahera	Nimbahera(RURAL)
93	Bhagyniajohara	5+5=10	Jhunjhunu	Chirawa	Chirawa
94	Bhairughat	3.15	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
95	Bhakharwasi	3.15	Sikar	LAXMANGARH(O& M)	FATEHPUR RURAL
96	Bhatiwad	3.15	JHUNJHUNU	JJN (R)	Badagaon
97	BHAWANIPURA	6.3	Sikar	REENGUS	REENGUS
98	Bhawtri	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Surajgarh
99	Bheema	8.15	Sikar	SIKAR RURAL	LOSAL
100	Bheemgarh	5	Chittorgarh	Kapasan	Rashmi
101	BHER	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
102	Bherupura	6.3	Sikar	SIKAR (O&M)	CSD-II
103	BHIL KUWA	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh
104	Bhindasari	3.15	nagaur	Ladnun	AEN(Rural,ladnu)
105	Bhojpur	3.15	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
106	Bhopal Sagar	6.30 (3.15+3.15)	Chittorgarh	Kapasan	Bhopal Sagar
107	Bhorki	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
108	bhunda	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
109	Bhundel	3.15	NAGAUR	NAGAUR	AEN(RURAI), NAGAUE
110	bhurwada	3.15	RAJASAMND	Kankroli 1	Railmagra
111	BHUWASA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
112	Bichawa	3.15	NAGAUR	DEEDWANA	AEN(O&M),CHOTI KHATU
113	Bichhdi	5x1+3.15x1	Udaipur	Xen Rural-I Udaipur	Girwa
114	Bichor	3.15	Chittorgarh	Bengu	Bassi
115	Bidoli	3.15	Sikar	SIKAR RURAL	LOSAL
116	Biinjusar	5	JHUNJHUNU	JJN (R)	Badagaon
117	Bijarniyo ki dhani	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
118	Bijoli	3.15+3.15+3. 15=9.45	Jhunjhunu	Chirawa	Surajgarh
119	Biladiya	6.3	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
120	Biloda	6.3	Chittorgarh	Nimbahera	Dungla

Mall

5. 7

Page 4 of 24

121	Binjyasi	3.15	Sikar	SIKAR RURAL	Dhod
122	BINOTA	8.15	Chittorgarh	Nimbahera	Nimbahera(RURAL)
123	BIRLOKA	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
124	Birmi	3.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
125	Birol	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
126	Bissau	5+3.15=8.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
127	Boheda	8.15	Chittorgarh	Nimbahera	Badisadri
128	Boo Narawata	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
129	Bood	3.15	Chittorgarh	Chittorgarh	Gangrar
130	Borav	8.15 (3.15+5)	Chittorgarh	Bengu	Rawatbhata
131	Borda	5	Chittorgarh	Chittorgarh	Gangrar
132	Bordiya	6.3	Pratapgarh	XE ONM PGH	AE ONM DALOT
133	BORI	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
134	BORIGAMA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
135	BORWAT	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
136	Bosana	3.15	Sikar	SIKAR RURAL	Dhod
137	Budhwara	3.15	ACC	XEN RURAL,AJMER	AEN(O&M, Pisangan)
138	Bugala	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
139	Buhana	5	JHUNJHUNU	Khetri Nagar	Buhana
140	CHAJJA	3.15	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
141	Chakunda	3.15	Pratapgarh	XE ONM PGH	AE ONM DALOT
142	Chanana	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chanana
143	CHANDER WADA	3.15	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
144	Chandesra	3.15X1	Udaipur	Xen Rural-I Udaipur	Debari
145	CHANDU JI GADA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
146	Chandwa	3.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
147	Changedi	3.15x2	Udaipur	Xen Rural-I Udaipur	Mavli
148	Chanwra	3.15	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
149	Charana	3.15	RAJASAMND	Kankroli	Railmagra
150	Charansingh Nagar	3.15	Jhunjhunu	Chirawa	Chanana
151	Charawas	3.15+3.15=6. 30	Jhunjhunu	Chirawa ·	Chanana
152	Chelasi	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (O&M)
153	Chenchi	8.15 (3.15+5)	Chittorgarh	Bengu	Bengu

Place

.*

7.1

Page 5 of 24

154	Chhapoli	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
155	Chhapri	3.15	Chittorgarh	Nimbahera	Dungla
156	Chhawasri	3.15	JHUNJHUNU	JJN (R)	Badagaon
157	Chhorai	3.15X3	Udaipur	Xen O&M Kherwada	Rishabdev
158	Chhotisadri	3.15	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
159	Chikarda	8.15	Chittorgarh	Nimbahera	Dungla
160	CHIKLI PUNA	3.15	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
161	Chiksi	3.15	Chittorgarh	Chittorgarh	Sawa
162	CHIPLATA	3.15	Sikar	SRIMADHOPUR	THOI
163	CHORDI	3.15	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
164	CHOTI SERVA	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
165	CHOTI SERVAN	3.15	BANSWARA	BANSWARA	AEN(O&M), Chhoti Sarvan
166	CHUGNI	3.15	NAGAUR	DEEDWANA	AEN(O&M), MOLASAR
167	Chupna	9.45	Pratapgarh	XE ONM PGH	AE ONM ARNOD
168	Churella	3.15+3.15=6. 30	Jhunjhunu	Jhunjhunu (O&M)	Bissau
169	Churi	3.15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
170	Dabda	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
171	Dabla	6.3	Sikar	NEEM KA THANA	Patan
172	Dabri Baloda	3.15+3.15=6. 39	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
173	Dadhariya Khurd	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
174	Dadiya	8.15	Sikar	SIKAR (O&M)	Piprali
175	DADUKA	3.15	BANSWARA	BAGIDORA ,	AEN (O&M, Garhi)
176	Dalot	13.15	Pratapgarh	XE ONM PGH	AE ONM DALOT
177	Dalpatpura	8.15	Sikar	NEEM KA THANA	Patan
178	Dasa ki dhani	3.15	Sikar	SIKAR (O&M)	Piprali
179	Dashera Maidan	5	Chittorgarh	Nimbahera	Nimbahera(O&M)
180	DATINA	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
181	Datunjla	3.15	Sikar	LAXMANGARH(O& M)	LAXMANGARH RURAL
182	Dehri	6.3 (3.15+3.15)	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
183	Delwash	5	Chittorgarh	Nimbahera	Dungla
184	Deogarh	9.45	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH

Ru

Page 6 of 24

185	Deri	3.15x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
186	DEU	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
187	DEVDA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
188	Devgav	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
189	Devla	3.15	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
190	Devpura	3.15	Chittorgarh	Bengu	Rawatbhata
191	Devrod	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chirawa
192	Dewla	3.15	nagaur	Makrana	AEN(REC, Makrana)
193	Dhamana	3.15	Chittorgarh	Kapasan	Kapasan
194	Dhamancha	5	Chittorgarh	Bengu	Bengu
195	Dhamniya road	11.3	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
196	Dhamotter	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
197	Dhanet	3.15	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
198	Dhariyawad	9.45	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
199	Dhawa	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
200	Dhawro ki dhani	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
201	Dhigal	3.15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
202	Dhikniya	0 !3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
203	Dhindwa	5+3.15=8.15	Jhunjhunu	Chirawa	Pilani
204	DHINGSARA	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
205	Dhmora	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
206	Dhod	10	Sikar	SIKAR RURAL	Dhod
207	Dholakhera	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
208	DHOLIYADER	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
209	Dhulwa	3.15	JHUNJHUNU	Khetri Nagar	Buhana
210	Dindoli	3.15	Chittorgarh	Kapasan	Rashmi
211	Dingri	3.15x1	Udaipur	Xen O&M Kherwada	Sarada
212	Doomra	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
213	Doongla	8.15	Chittorgarh	Nimbahera	Dungla
214	Dudwa	5	Jhunjhunu	Chirawa	Pilani
215	Dugar	3.15	Chittorgarh	Bengu	Bassi

Mal

Page 7 of 24

216	Dujod	5	Sikar	SIKAR RURAL	Sikar (Rural)
217	Dukia	3.15	Sikar	REENGUS	PALSANA
218	Dulaniya	5+5+5=15	Jhunjhunu	Chirawa	Pilani
219	Dundlod	5+5=10	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
220	DUNGARA	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh)
221	DUNGARIYA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
222	Eklingpura	5	Chittorgarh	Bengu	Rawatbhata
223	Faglwa	6.3	Sikar	SIKAR RURAL	Sikar (Rural)
224	Falichda	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
225	Fatehnagar	3.15X1+5X1	Udaipur	Xen Rural-I Udaipur	Mavli
226	Fatehnagar Railway Crossing	5x1	Udaipur	Xen Rural-I Udaipur	Mavli
227	Fatehpura	6.3	Sikar	SIKAR RURAL	Dhod
228	Fathegarh	6.3	Pratapgarh	XE ONM PGH	AE ONM ARNOD
229	Gadawat	3.15x1	Udaipur	Xen O&M Kherwada	Rishabdev
230	Gadhla	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
231	Gadola	9.45	Chittorgarh	Nimbahera	Nimbahera(O&M)
232	Gagrol	6.3	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
233	Gaju	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
234	Galoli	3,15	NAGAUR	DEEDWANA	AEN(O&M), ROLL
235	Gandraf	3.15	Chittorgarh	Kapasan	Rashmi
236	GANESHPURA	3.15	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
237	GANGADTALAI	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
238	Gangiyasar	3.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
239	Gangrar	8.15 (3.15+5)	Chittorgarh	Chittorgarh	Gangrar
240	GANODA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
241	Ganthlasar	3.15	NAGAUR	NAGAUR	AEN(RURAI), NAGAUR
242	Gawaloo	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
243	Geda Khurd	3.15	nagaur	Makrana	AEN(O&M,Gachhipur a)
244	Ghanoli	3.15x1+1.6X 1	Udaipur	Xen Rural-I Udaipur	Debari
245	Ghantali	6.3	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
246	Ghasa	3.15x1	Udaipur	Xen Rural-I Udaipur	Debari
247	Ghaseda	3.15	JHUNJHUNU	Khetri Nagar	Buhana

Ale

Page 8 of 24

248	Ghatiyawali	6.3	Chittorgarh	Chittorgarh	Sawa
249	GHATOL	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
250	GHIRNIYA	3.15	Sikar	LAXMANGARH(O& M)	NECHHWA
251	Ghoriwara	3.15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
252	Gidania	3.15	Jhunjhunu	Chirawa	Sultana
253	Gilund	3.15	Chittorgarh	Chittorgarh	Sawa
254	Gogor	3.15	nagaur	Kuchaman	AEN(O&M,NawaCity)
255	Gokalpura	8.15	Sikar	SIKAR (O&M)	Piprali
256	Golyana	8+5=13	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
257	Gopalpura	3.15	nagaur	Kuchaman	AEN(Rural,Kuchaman City)
258	GOPI NATH KA GADA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
259	Gosunda	5	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
260	Goth	3.15	NAGAUR	DEEDWANA	AEN(O&M), ROLL
261	Gothara	3.15	JHUNJHUNU	Khetri Nagar	Khetri Town
262	Goutemeshwar	6.3	Pratapgarh	XE ONM PGH	AE ONM ARNOD
263	Govaliya (Khakhla)	3.15	BHILWARA	XEN(O&M)	Gangapur
264	Govindpura	3.15	Chittorgarh	Bengu	Bengu
265	Guda Bhagwan Das	3.15	NAGAUR	NAGAUR	AEN(RURAI), NAGAUR
266	Gugli	8.15	RAJASAMND	AMET	AMET
267	Gumanpura	3.15	Chittorgarh	Nimbahera	Dungla
268	Gunawati	5	nagaur	Makrana	AEN(O&M,Makarana)
269	Gungara	8.15	Sikar	SIKAR (O&M)	Piprali
270	Gunta	8.15 (3.15+5)	Chittorgarh	Bengu	Bengu
271	Hadmatiya Kundal	3.15	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
272	Haminpur	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Pilani
273	HAMIRANA	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
274	HARIPURA	6.3	Sikar	SRIMADHOPUR	AJEETGARH
275	Harsore	3.15	NAGAUR	XEN(O&M,DEGANA)	BHERUNDA(O&M)
276	Hathiyana	6.30 (3.15+3.15)	Chittorgarh	Kapasan	Kapasan
277	Heerwa	3.15	Jhunjhunu	Chirawa	Chirawa
278	HEJA MAL	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh)
279	HEMPURA	5	NAGAUR	NAGAUR	AEN(O&M),

(M)

25

Page 9 of 24

					KHINVSAR
280	Hetamsar	3.15	Jhunjhunu	Jhunjhunu (O&M)	Mandawa
281	Hirani	3.15	nagaur	Kuchaman	AEN(Rural,Kuchaman City)
282	Idana	3.15x1	Udaipur	XEN SALUMBER	Salumber (O&M)
283	Inana	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
284	Indali	3.15	JHUNJHUNU	JJN (R)	JJN (R)
285	Inderpura	3.15	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
286	Indokali	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
287	Indokha	3.15	nagaur	Makrana	AEN(O&M,Gachhipur a)
288	Indora	6.30 (3.15+3.15)	Chittorgarh	Chittorgarh	Gangrar
289	Intali	5x1+3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
290	ISARNVDA	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
291	Islampur	3.15	JHUNJHUNU	JJN (R)	Bagar
292	Ismailpur	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chirawa
293	Jahaj	3.15	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
294	JAHANPURA	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN(O&M), Chhoti Sarvan
295	Jaitpura	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
296	Jajli	6.3	Pratapgarh	XE ONM PGH	AE ONM ARNOD
297	Jakhal	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
298	Jakhod	5+3.15=8.15	Jhunjhunu	Chirawa '	Surajgarh
299	Jakhoda	3.15	JHUNJHUNU	JJN (R)	Bagar
300	Jalampura	5	Chittorgarh	Chittorgarh	Sawa
301	Jaliya	8.15	Chittorgarh	Nimbahera	Nimbahera(O&M)
302	Jaloda jager	9.45	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
303	JAMNADI	10	Sikar	SRIMADHOPUR	AEN O&M AJEETGARH
304	Janana	8.15(3.15+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
305	Jasrasar	5	Sikar	LAXMANGARH(O& M)	LAXMANGARH RURAL
306	Jawad	3.15x1	Udaipur	XEN SALUMBER	Veerpura
307	JAWADA	10	Chittorgarh	Nimbahera	Nimbahera(RURAL)
308	Jawada Nimdi	6.30	Chittorgarh	Bengu	Rawatbhata

ales

Page 10 of 24

		(3.15+3.15)			
309	Jawhar nagar	6.3	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
310	Jayal	6.3 (3.15+3.15)	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
311	Jeeni	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Surajgarh
312	Jerthi	3.15	Sikar	SIKAR RURAL	Kudan
313	Jetpura	8.15	RAJASAMND	AMET	AMET
314	Jewana	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
315	JEWELIYAWAS	3.15	NAGAUR	DEEDWANA	AEN(O&M),DEEDWAM
316	Jhadol	3.15x1	Udaipur	XEN SALUMBER	Veerpura
317	Jhajar	3.15	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
318	JHALKHEDA	3.15	Chittorgarh	Bengu	Rawatbhata
319	Jhallara	3.15x1	Udaipur	XEN SALUMBER	Salumber rural
320	Jharkhana	10	Chittorgarh	Nimbahera	Badisadri
321	Jharno ki sarai	3.15x1+3.15x 1	Udaipur	Xen Rural-I Udaipur	Girwa
322	Jhasma	6.30 (3.15+3.15)	Chittorgarh	Kapasan	Bhopal Sagar
323	Jhatawa	3.15	JHUNJHUNU	JJN (R)	Malsisar
324	Jherli	\$+3.15=8.15	Jhunjhunu	Chirawa	Pilani
325	Jhunjhunda	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
326	Jodhiyasi	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH
327	JOLANA	5	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
328	Jurathara	6.6	Sikar	REENGUS	palsana
329	Kachotiya	6.3	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
330	Kachumra	3.15	Chittorgarh	Nimbahera	Badisadri
331	Kagdar Bhatia	3.15x1	Udaipur	Xen O&M Kherwada	Rishabdev
332	Kairpura Kalan	3.15	Jhunjhunu	Chirawa	Sultana
333	Kairu	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
334	Kajra	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Surajgarh
335	Kakoda	5+5=10	Jhunjhunu	Chirawa	Surajgarh
336	Kakrana	3.15	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
337	Kali pahari		JHUNJHUNU	JJN (R)	Bagar
338	Kamediya	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH

aber

1

1....

-4

7.4

Page 11 of 24

339	Kanbai	3.15x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
340	Kanera	8.15	Chittorgarh	Nimbahera	Mangrol
341	Kankarwa	5	Chittorgarh	Kapasan	Bhopal Sagar
342	Kannoj	6.3	Chittorgarh	Nimbahera	Bhadesar
343	KANTIYA	8.15 (5+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
344	KANWAT	8.15	Sikar	NEEM KA THANA	KANWAT
345	KARAD	3.15	Sikar	DANTARAMGARH	KHACHARIYAWAS
346	Kari	5+3.15=8.15	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
347	Karjali	3.15	Chittorgarh	Kapasan	Kapasan
348	KARJI	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
349	Karloo	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
350	KARNU	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
351	Karunda	6.3	Chittorgarh	Nimbahera	Mangrol
352	KASARWADI	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh
353	Kashara Khedi/ROLAHEDA	3.15	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
354	Kashmor	5	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
355	Kasli	6.3	Sikar	SIKAR RURAL	Dhod
356	Katoti	3.15	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
357	Katunda Mode	8.15 (3.15+5)	Chittorgarh	Bengu	Bengu
358	Keerpura	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
359	Kela mela	6.3	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
360	Keli	3.15	Chittorgarh	Nimbahera	Nimbahera(O&M)
361	Kelu kheda	8.15	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
362	Kesharpura	3.15	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
363	Kewalpura	3.15	Chittorgarh	Nimbahera	Badisadri
364	Khabdiyana	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH
365	KHACHARIYAWAS	6.3	Sikar	DANTARAMGARH	KHACHARIYAWAS
366	Khajpur	3.15	JHUNJHUNU	JJN (R)	JJN (R)
367	KHAJURI	3.15	BANSWARA	BANSWARA	AEN(O&M), Chhoti Sarvan
368	Khajwana	15(5+5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
369	KHAMERA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)

Page 12 of 24

NB

370	Khandwa	3.15	JHUNJHUNU	Khetri Nagar	Buhana
371	khardewala	5	Chittorgarh	Nimbahera	Badisadri
372	KHARSANA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
373	Khati Khera	3.15	Chittorgarh	Bengu	Rawatbhata
374	KHATORA	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
375	KHATUSHYAM JI	16.15	Sikar	DANTARAMGARH	KHATUSHYAM JI
376	Khemli	3.15+3.15	Udaipur	Xen Rural-I Udaipur	Debari
377	KHERA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
378	Kherad	3.15x1	Udaipur	XEN SALUMBER	Salumber (O&M)
379	Khermaliya	3.15	Chittorgarh	Nimbahera	Badisadri
380	Kherot	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
381	KHERWALIPADA	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
382	Kherwara	5X1	Udaipur	Xen O&M Kherwada	Kherwara O&M
383	Khinswar	3.15	Sikar	LAXMANGARH(O& M)	LAXMANGARH(0&M)
384	KHINVSAR OLD	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
385	Khirod	3.15	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
386	KHODAN	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
387	Khodip	3.15	Chittorgarh	Nimbahera	Bhadesar
388	Khoor	11.3	Sikar	SIKAR RURAL	LOSAL
389	Khorandi	6.30(3.15+3. 15))	nagaur	Kuchaman	AEN(O&M,Chitawa)
390	KHORIYA	3.15	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
391	Khudaniya	3.15+3.15=6. 30	Jhunjhunu	Chirawa 1	Pilani
392	KHUNDALA	8.15 (5+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
393	Khunkhuna	6.3 (3.15+3.15)	NAGAUR	DEEDWANA	AEN(O&M),CHOTI KHATU
394	Kirdoli	3.15	Sikar	SIKAR RURAL	Sikar (Rural)
395	Kisan kareri	3.15	Chittorgarh	Nimbahera	Dungla
396	Kithana	5+3.15=8.15	Jhunjhunu	Chirawa	Sultana
397	Kolida	8.15	Sikar	SIKAR (O&M)	Piprali
398	Kolsiya	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
399	KOTDA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)

NE

...*

 $\tilde{t} \neq 0$

Page 13 of 24

٠

10

400	Kotdi	3.15	Pratapgarh	XE ONM PGH	AE ONM DALOT
401	Kuchera 132 KV	10(5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
402	Kudan	11.3	Sikar	SIKAR RURAL	Kudan
403	Kuharwas	5	JHUNJHUNU	Khetri Nagar	Buhana
404	Kuloth Kala	3.15	Jhunjhunu	Chirawa	Surajgarh
405	Kuloth Khurad	5+5=10	Jhunjhunu	Chirawa	Surajgarh
406	Kulthana	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
407	Kumari	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(RURAI), NAGAUR
408	Kumawas	5+5+3.15=13 .15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
409	Kuni	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
410	KUNJI KA PARDA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
411	Kunwaliya	8.15 (3.15+5)	Chittorgarh	Chittorgarh	Gangrar
412	KUPDA	3.15	BANSWARA	BANSWARA	AEN (O&M-II), Banswara
413	kuraj	5.65	RAJASAMND	Kankroli	Railmagra
414	KURCHI	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
415	KUSHALGARH	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
416	Kuthana	3.15	Chittorgarh	Nimbahera	Bhadesar
417	Kyamsar	5+3.15=8.15	Jhunjhunu	Chirawa	Sultana
418	Kyar ki Dhani	3.15	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
419	LADPUR	3.15	Sikar	REENGUS	AEN (O&M) REENGUS
420	LADWA	3.15	Sikar	SIKAR RURAL	Dhod
421	LALAP	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
422	LALAWAS	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
423	Lamba	6.30(3.15+3. 15)	nagaur	Kuchaman	AEN(O&M,Chitawa)
424	Lambadabra	3.15	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
425	CAMIYA	8.15	Sikar	DANTARAMGARH	KHATUSHYAM JI
426	LASDAWAN	8.15	Chittorgarh	Nimbahera	Nimbahera(RURAL)
427	Laungach	5	Chittorgarh	Kapasan	Kapasan
428	Laxman ka bas	6.3	Sikar	SIKAR (O&M)	Piprali
429	Ledi	3.15	nagaur	Ladnun	AEN(Rural,ladnu)
430	Leswa	6.3	Chittorgarh	Nimbahera	Bhadesar

Alecc

.

 $\overline{1}$

Page 14 of 24

.

10

431	Linkoda	6.3	Chittorgarh	Nimbahera	Badisadri
432	LOHARIYA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
433	Lopda	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
434	Losal	15	Sikar	SIKAR RURAL	LOSAL
435	Lothiyana	3.15	Chittorgarh	Nimbahera	Dungla
436	LOTIYANA	3.15	Chittorgarh	Bengu	Rawatbhata
437	Loyal	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chanana
438	LUNAWAS	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
439	Luttoo	3.15	JHUNJHUNU	JJN (R)	Malsisar
440	MACCHAWALI	6.3	Sikar	REENGUS	AEN (O&M) REENGUS
441	MADHANIO KI DHANI	3.15	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
442	Madhopur ITI	5	Chittorgarh	Bengu	Bengu
443	Madhura Talab	3.15	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
444	MADKOLA	3.15	BANSWARA	KUSHALGARH	AEN(O&M, Anandpuri)
445	MADPURA	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
446	Magra bas	3.15	nagaur	Ladnun	AEN(O&M,Ladnu)
447	MAGRAWAS	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
448	MAHESHPURA	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
449	MAHIDEM	3.15	BANSWARA	BANSWARA	AEN (O&M-II), Banswara
450	Mahpalwas	3.15	Jhunjhunu	Chirawa '	Surajgarh
451	Mainana	3.15	JHUNJHUNU	Khetri Nagar	Khetri Nagar
452	Mainns	6.3(3.15+3.1 5)	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
453	Maligaonv	3.15	JHUNJHUNU	JJN (R)	Bagar
454	Malsisar	3.15	JHUNJHUNU	JJN (R)	Malsisar
455	Malupura Bhamarwasi	3.15	Jhunjhunu	Chirawa	Sultana
456	Managao	6.3	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
457	Managaon	6.3	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
458	MANAKPUR	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
459	Mandavi	6.3	Pratapgarh	XE RURAL PGH	AE ONM

MSV

+

Page 15 of 24

٠

		*			DHARIYAWAD
460	Mandawa	5+3.15=8.15	Jhunjhunu	Jhunjhunu (O&M)	Mandawa
461	Mandawari	3.15	Chittorgarh	Bengu	Bengu
462	Mandeta	8.15	Sikar	SIKAR RURAL	LOSAL
463	Mandfiya	6.3	Chittorgarh	Nimbahera	Bhadesar
464	Mandri	3.15	JHUNJHUNU	Khetri Nagar	Khetri Town
465	Mangalward	6.3	Chittorgarh	Nimbahera	Dungla
466	Mangrol	8.15	Chittorgarh	Nimbahera	Mangrol
467	Mani Vihar	8+5=13	Jhunjhunu	Jhunjhunu (O&M)	Jhunjhunu (O&M)
468	Manohargarh	9.45	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
469	Manota Jatan	3.15	Jhunjhunu	Chirawa	Chanana
470	Manpur	3.15x1	Udaipur	XEN SALUMBER	Salumber rural
471	Manpura	8.15 (3.15+5)	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
472	Marmi	3.15	Chittorgarh	Kapasan	Rashmi
473	Masaro ki obri	5x1+5x1	Udaipur	Xen O&M Kherwada	Rishabdev
474	Mavli	3.15X2	Udaipur	Xen Rural-I Udaipur	Mavli
475	Medi ka amrana	3.15	Chittorgarh	Chittorgarh	Sawa
476	Meghpura	3.15	Chittorgarh	Bengu	Bengu
477	Mehara	5	JHUNJHUNU	Khetri Nagar	Khetri Town
478	MEHROLLI	10	Sikar	REENGUS	AEN (O&M) REENGUS
479	Merta Road	10(5+5)	NAGAUR	XEN(O&M,MERTA)	Merta(Rural)
480	Minda	4.75(3.15+1. 6)	nagaur	Kuchaman	AEN(O&M,NawaCity)
481	Mindana	3.15	Chittorgarh	Nimbahera	Nimbahera(RURAL)
482	Mohan pura	6.3	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
483	MOHKAMPURA	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
484	Mokhampura	9.45	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
485	Molasi	3.15	Sikar	SIKAR RURAL	Dhod
486	MONADUNGRI	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
487	Morwan	5	Chittorgarh	Nimbahera	Dungla
488	MOTA GAUN	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
489	Mugana	6.3	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
490	Mujwa	3.15	Chittorgarh	Nimbahera	Badisadri
491	Mukandgarh	2.5+5=7.5	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
492	Mundi	3.15	NAGAUR	DEEDWANA	AEN(O&M), ROLL
493	Mundwa	10(5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA

Page 16 of 24

M

194	Mundwa (IPDS)	5	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
195	Mundwara	13.15	Sikar	SIKAR RURAL	Sikar (Rural)
496	MUNGTHALI	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
497	Murla	3.15	Chittorgarh	Kapasan	Bhopal Sagar
498	NAGAWADA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
499	NAGRI	8.15 (5+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
500	Nagwa	3.15	Sikar	SIKAR RURAL	Dhod
501	Nakor	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
502	Nanagli	5+3.15=8.15	Jhunjhunu	Chirawa	Chanana
503	Nandvwi	5	Chittorgarh	Bengu	Bengu
504	Nani	5	Sikar	SIKAR RURAL	Sikar (Rural)
505	Napaniya	3.15	Chittorgarh	Nimbahera	Bhadesar
506	Napavli	6.3	Chittorgarh	Nimbahera	Bhadesar
507	NAPLA	3.15	BANSWARA	BANSWARA	AEN(O&M), Chhoti Sarvan
508	Narela	3.15	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
509	Narhar	3.15+3.15+1. 5=7.8	Jhunjhunu	Chirawa	Chirawa
510	NARWA	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
511	NATHPURA	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
512	Nawalgarh	5+5+5=15	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (O&M)
513	Naya boriya	3.15	Pratapgarh	XE RURAL PGH	AE ONM DHARIYAWAD
514	Nayakheda	3.15	Chittorgarh	Nimbahera	Nimbahera(RURAL)
515	Neem ki dhani	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
516	Netarwas	6.3	Sikar	SIKAR RURAL	Dhqd
517	Netaval Garh Pachli	5	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
518	New Housing Board	5	Jhunjhunu	Jhunjhunu (O&M)	Jhunjhunu (O&M)
519		3.15	BANSWARA	BANSWARA	AEN (O&M-II), Banswara
520	Nikumbh	6.3	Chittorgarh	Nimbahera	Badisadri
521		8.15 (3.15+5)	Chittorgarh	Chittorgarh	Gangrar
522		3.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
523		3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora
524		3.15x1	Udaipur	Xen Rural-I Udaipur	Debari

Page 17 of 24

(Alged

525	Nua	3.15+3.15=6. 30	Jhunjhunu	Jhunjhunu (O&M)	Mandawa
526	Nunia Gothra	3.15	JHUNJHUNU	JJN (R)	Bagar
527	Nya Gaun	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
528	Ojtoo	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Chirawa
529	Pacheri	3.15	JHUNJHUNU	Khetri Nagar	Buhana
530	PADAAL	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
531	PADLA	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
532	Pahuna	5	Chittorgarh	Kapasan	Rashmi
533	PAKHAND	3.15	RAJASAMND	Nathdwara	Nathdwara
534	Palanakala	5x1	Udaipur	Xen Rural-I Udaipur	Mavli
535	PALDI	6.3	Sikar	LAXMANGARH(O& M)	LAXMANGARH(O&M)
536	Palka	3.15	Chittorgarh	Bengu	Bassi
537	PALODA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
538	Palodra	3.15x1+3.15x 1	Udaipur	XEN SALUMBER	Veerpura
539	Palsana I/A	6.3	Sikar	REENGUS	palsana
540	PANCHLA SIDDHA	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
541	PANCHORI	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
542	Panchwa	11.30(5+3.15 +3.15)	nagaur	Kuchaman	AEN(Rural,Kuchaman City)
543	Pandiyawara	3.15x1	Udaipur	Xen O&M Kherwada	Rishabdev
544	Pandoli	10 (5+5)	Chittorgarh	Chittorgarh ,	Chittorgarh (Rec)
545	Pandoli Station	3.15	Chittorgarh	Kapasan	Kapasan
546	Panmodi	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
547	Panndeda	3.15	Chittorgarh	Nimbahera	Badisadri
548	Parewari	3.15	nagaur	Kuchaman	AEN(O&M,Chitawa)
549	Parsad	3.15x1	Udaipur	Xen O&M Kherwada	Sarada
550	₽arsoli	3.15	Chittorgarh	Nimbahera	Badisadri
551	Parsrampura	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Nawalgarh (Rural)
552	PARTAPUR	6.3(3.15+3.1 5)	BANSWARA	BAGIDORA	AEN (O&M, Partapur
553	PATAN	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
554	Patiya	3.15x2	Udaipur	Xen O&M Kherwada	Kherwara O&M

Mar

÷

Page 18 of 24

555	Patniya	3.15	Chittorgarh	Chittorgarh	Sawa
556	Patoliya	3.15	Chittorgarh	Kapasan	Bhopal Sagar
557	Patusari	5	JHUNJHUNU	JJN (R)	JJN (R)
558	Peeh	8.15(5+3.15)	nagaur	Makrana	AEN(O&M,Bagot)
559	Peelikhera	6.3	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
560	Peepalkhut	6.3	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
561	Peepli	5+5=10	Jhunjhunu	Chirawa	Pilani
562	Pewa	3.15	Sikar	SIKAR RURAL	Dhod
563	PH 2 Lakadwas	3.15x2	Udaipur	Xen Rural-I Udaipur	Girwa
564	Pichanwa	1.6+3.15+3.1 5=7.9	Jhunjhunu	Chirawa	Chirawa
565	Pilani	8+8=16	Jhunjhunu	Chirawa	Pilani
566	Pind bhanuja	10	Chittorgarh	Nimbahera	Badisadri
567	Pindiya	3.15	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
568	PIPALIYA	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
569	Pipli	5+5=10	Jhunjhunu	Chirawa	Pilani
570	Piprali	10	Sikar	SIKAR (O&M)	Piprali
571	Pirana	6.3	Chittorgarh	Nimbahera	Dungla
572	PITAMPURI	8.15	Sikar	NEEM KA THANA	KANWAT
573	Ponkh	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha Rural
574	PRITAMPURI	8.15	Sikar	NEEM KA THANA	KANWAT
575	Putholi	3.15	Chittorgarh	Chittorgarh	Gangrar
576	Rabdiyad	3.15	nagaur	Makrana	AEN(O&M,Bagot)
577	Raghunathpura	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
578	Rahanwa	3.15	Sikar	LAXMANGARH(O& M)	LAXMANGARH(O&M)
579	Railmagra	6.3	RAJASAMND	Kankroli	Railmagra
580	Raipur .	3.15	Pratapgarh	XE ONM PGH	AE ONM DALOT
581	Raipur Hiran	3.15	JHUNJHUNU	Khetri Nagar	Buhana
582	RAIPURA	3.15	Sikar	REENGUS	palsana
583	RAIYANA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Garhi)
584	Rajas	11.30(3.15+3 .15+5)	nagaur	Kuchaman	AEN(O&M,NawaCity)
585	Rajgarh	3.15	Chittorgarh	Bengu	Bassi
586	Rajiliya	3.15	nagaur	Kuchaman	AEN(O&M,NawaCity)

Ales

 \tilde{c}^{*}

Page 19 of 24

587	Ram devji	11.3	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
588	RAMGARH	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
589	Rampura talai	5	Sikar	SIKAR RURAL	LOSAL
590	RANI KHEDA	5	Chittorgarh	Nimbahera	Nimbahera(RURAL)
591	ranoli	8.15	Sikar	REENGUS	palsana
592	Rashmi	8.15 (3.15+5)	Chittorgarh	Kapasan	Rashmi
593	Rasidpura	6.3	Sikar	SIKAR RURAL	Kudan
594	Rasoolpur	5	JHUNJHUNU	Khetri Nagar	Babai
595	Rathajana	9.45	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
596	Rathliya	4.15(3.15+1)	nagaur	Makrana	AEN(REC, Makrana)
597	Rayti	3.15	Chittorgarh	Bengu	Bengu
598	REST HOUSE	10(5+5)	NAGAUR	NAGAUR	AEN(O&M), NAGAUR
599	RIICO	8.15 (3.15+5)	Chittorgarh	Kapasan	Kapasan
600	RIICO Gudli	8X2+5*1	Udaipur	Xen Rural-I Udaipur	Debari
601	RiicO Parbatsar	5	nagaur	Makrana	AEN(O&M,Parabatsar
602	RIICO REENSUS	10	Sikar	REENGUS	AEN (O&M) REENGUS
603	Rishabdev	3.15x2+5x1	Udaipur	Xen O&M Kherwada	Rishabdev
604	ROHIDA	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
605	Rohindi -	3.15 •	nagaur	Makrana	AEN(O&M,Parabatsar
606	Rohi-Raipura	6.3	Sikar	REENGUS	palsana
607	Rol	8.15(3.15+5)	NAGAUR	DEEDWANA	AEN(O&M), ROLL
608	Roliya	6.30 (3.15+3.15)	Chittorgarh	Kapasan '	Kapasan
609	Rood	3.15	Chittorgarh	Kapasan	Rashmi
610	Roon -I	10(5+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
611	Roon -II	6.3 (3.15+3.15)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
612	Rotu	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH
613	Rukansar	3.15	Sikar	LAXMANGARH(O& M)	Ramgarh skh.
614	Rupakhadi	3.15	Chittorgarh	Kapasan	Kapasan
615	Sadas	8.15 (3.15+5)	Chittorgarh	Chittorgarh	Gangrar
616	SADEENSAR	3.15	Sikar	LAXMANGARH(O& M)	FATEHPUR RURAL

(NOV

Page 20 of 24

617	Sadi	3.15	Chittorgarh	Bengu	Bassi
618	Sagdod	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara
619	Sahanwa	3.15	Chittorgarh	Chittorgarh	Sawa
620	sajjanpura	3.15	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
621	sakhtali khurd	3.15	Pratapgarh	XE ONM PGH	AE ONM ARNOD
622	Sakroda	3.15x1	Udaipur	Xen Rural-I Udaipur	Girwa
623	Salamgrah	10	Pratapgarh	XE ONM PGH	AE ONM DALOT
624	SALEDIPURA	6.3	Sikar	REENGUS	KHANDELA
625	Salera kala	3.15x1	Udaipur	Xen Rural-I Udaipur	Debari
626	Salumber	3.15x2	Udaipur	XEN SALUMBER	Salumber (O&M)
627	Salumber Hosuing Board	3.15x1	Udaipur	XEN SALUMBER	Salumber (O&M)
628	Sami	3.15	Sikar	SIKAR RURAL	LOSAL
629	Samriya Kala	3.15	Chittorgarh	Bengu	Bengu
630	Sangliya	8.15	Sikar	SIKAR RURAL	LOSAL
631	SANIK NAGAR	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
632	Sankhwas	8.15(3.15+5)	NAGAUR	NAGAUR	AEN(O&M), MUNDWA
633	Sanwad	5x1+3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
634	Sarada	3,15x1	Udaipur	Xen O&M Kherwada	Sarada
635	Saran	3.15	Chittorgarh	Chittorgarh	Gangrar
636	Sarasani	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH
637	Sardarpur+B1503	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Pilani
638	Sardarpura	3.15	nagaur	Kuchaman	AEN(O&M,Chitawa)
639	SAREDI BADI	3.15	BANSWARA	BAGIDORA	AEN (O&M, Partapur)
640	Sarera	5x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
641	SARGOTH	10	Sikar	REENGUS	AEN (O&M) REENGUS
642	Sarwadi	6.3	Sikar	SIKAR RURAL	Dhod
643	SATIKA	8.15(5+3.15)	NAGAUR	NAGAUR .	AEN(O&M), KHINVSAR
644	Satkhanda	6.3	Chittorgarh	Nimbahera	Mangrol
645	Satola	9.45	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADR
646	Satpuda	3.15	Chittorgarh	Chittorgarh	Chittorgarh (Rec)
647	Savloda purohitan	6.3	Sikar	SIKAR RURAL	Kudan
648	sawa	9.45	Chittorgarh	Chittorgarh	Sawa

17

Page 21 of 24

649	Sawatgath	3.15	nagaur	Kuchaman	AEN(O&M,NawaCity)
650	Sehi Kalan	3.15	Jhunjhunu	Chirawa	Chirawa
651	Sekhsar	3.15	Jhunjhunu	Jhunjhunu (O&M)	Mandawa
652	Semari	5x1	Udaipur	Xen O&M Kherwada	Sarada
653	Semarthali	3.15	Pratapgarh	XE RURAL PGH	AE RURALCHOTISADRI
654	SENAWASA	3.15	BANSWARA	BANSWARA	AEN (O&M, Ghatol)
655	Senthi	8	Chittorgarh	Chittorgarh	CHI O&M (I)
656	Sersi Melana	5	Chittorgarh	Nimbahera	Mangrol
657	Sewad Chhoti	6.3	Sikar	SIKAR RURAL	Dhod
658	Shambupura	6.3	Chittorgarh	Chittorgarh	Sawa
659	Sherpura	6.3	Sikar	REENGUS	palsana
660	Sheshpur	3.15x1	Udaipur	XEN SALUMBER	Salumber rural
661	Shiavsinghpura/ KUDLI	6.3	Sikar	SIKAR (O&M)	CSD-III
662	Shilanwad	3.15	nagaur	Ladnun	AEN(O&M,Nimbi Jodha)
663	Shiv	3.15	nagaur	Kuchaman	AEN(Rural,Kuchaman City)
664	Shiv Mandir	10(5+5)	nagaur	Kuchaman	AEN(O&M,Kuchaman City)
665	Shiv Nagar	3.15	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
666	Shree Bala JI	3.15	NAGAUR	NAGAUR	AEN(RURAI), NAGAUR
667	Shyampura	5	Sikar	SIKAR (O&M)	Piprali
668	Shyamsar	3.15	NAGAUR	NAGAUR	AEN(O&M), DEH
669	Siddhapura	8.15	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
670	Sidheriya	6.3	Pratapgarh	XE ONM PGH	AE ONM PRATPGARH
671	Sigra	3.15	Jhunjhunu	Jhunjhunu (Q&M)	Mandawa
672	SIHODI	3.15	Sikar	SRIMADHOPUR	THOI
673	Sihot Badi	6.3	Sikar	SIKAR RURAL	Dhod
674	Sihot Chhoti	10	Sikar	SIKAR RURAL	Sikar (Rural)
675	SIMARALA	6.3	Sikar	REENGUS	AEN (O&M) REENGUS
676	Singhpur	8.15 (3.15+5)	Chittorgarh	Kapasan	Kapasan
677	Singnore	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
678	Siyakhedi	6.3	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
679	SOBAWALI	6.3	Chittorgarh	Nimbahera	Nimbahera(RURAL)
680	Solana	3.15	Jhunjhunu	Chirawa	Chanana
681	Somi	3.15	Chittorgarh	Kapasan	Rashmi
682	SON NAGAR	10 (5+5)	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR

about

1

Page 22 of 24

683	Sonagar	3.15	Chittorgarh	Bengu	Bassi
684	Soniyana	8.15 (3.15+5)	Chittorgarh	Chittorgarh	Gangrar
685	SONTHALIYA	6.3	Sikar	REENGUS	AEN (O&M) REENGUS
686	Soobi	3.15	Pratapgarh	XE RURAL PGH	AE ONM CHOTISADRI
687	Sotwara	3.15	Jhunjhunu	Nawalgarh (O&M)	Mukandgarh
688	Sudri	3.15	Chittorgarh	Chittorgarh	Gangrar
689	Suhagpura	6.3	Pratapgarh	XE ONM PGH	AE ONM PEEPALKHUNT
690	Sukhwada	3.15	Chittorgarh	Nimbahera	Bhadesar
691	Sulai	3.15x1	Udaipur	Xen O&M Kherwada	Kherwara O&M
692	Sultana	5+5=10	Jhunjhunu	Chirawa	Sultana
693	Sunari	3.15	nagaur	Ladnun	AEN(Rural,ladnu)
694	Surajgarh	5+5+5=15	Jhunjhunu	Chirawa	Surajgarh
695	Surpur	3.15	Chittorgarh	Kapasan	Kapasan
696	SURVANIYA	3.15	BANSWARA	BANSWARA	AEN (Rural, Banswara)
697	Suwala	3.15	BANSWARA	BAGIDORA	AEN (O&M, Bagidora)
698	Swami Sehi	3.15+3.15=6. 30	Jhunjhunu	Chirawa	Surajgarh
699	Tain	3.15	Jhunjhunu	Jhunjhunu (O&M)	Bissau
700	TALWARA	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (Rural, Banswara)
701	TAMBESRA/OSARA	3.15	BANSWARA	KUSHALGARH	AEN(O&M,Sajjangarh)
702	Tana	3•15	Chittorgarh	Kapasan	Bhopal Sagar
703	TANKLA	5	NAGAUR	NAGAUR	AEN(O&M), KHINVSAR
704	Tarnau	3.15	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
705	Thamala	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
706	THICKRIYA	8.15	Sikar	REENGUS	AEN (O&M) REENGUS
707	Thikriya	3.15	Chittorgarh	Chittorgarh	Sawa
708	тноі	6.3	Sikar	SRIMADHOPUR	тної
709	Tidi	3.15x1	Udaipur	Xen Rural-I Udaipur	Girwa
710	TIMEDA	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
711	Ţitanwar	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
712	Tiwadi Ki Dhani	3.15	Sikar	SRIMADHOPUR	AEN O&M SRIMADHOPUR
713	Todi	3.15+3.15=6. 30	Jhunjhunu	Nawalgarh (O&M)	Gudha (O&M)
714	todi madhopura	8.15	Sikar	REENGUS	palsana
715	Tonk Chhelri	5	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati

Page 23 of 24

(A)

716	Topakheda	6.3	Pratapgarh	XE RURAL PGH	AE RURAL PRATPGARH
717	Toshina	4.75 (3.15+1.6)	NAGAUR	DEEDWANA	AEN(O&M),CHOTI KHATU
718	Udaipurwati	5+5=10	Jhunjhunu	Nawalgarh (O&M)	Udaipurwati
719	Ugarpura	3.15	nagaur	Kuchaman	AEN(Rural,Kuchaman City)
720	Umand	6.30 (3.15+3.15)	Chittorgarh	Kapasan	Kapasan
721	UMARAI	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (Rural, Banswara)
722	Uncha	6.30 (3.15+3.15)	Chittorgarh	Kapasan	Rashmi
723	Unchaida	6.3 (3.15+3.15)	NAGAUR	DEEDWANA	AEN(O&M), JAYAL
724	UNKALA	3.15	BANSWARA	BANSWARA	AEN (O&M, Kushalgarh)
725	Utharda	3.15x1	Udaipur	XEN SALUMBER	Salumber (O&M)
726	Vani	8.15	Chittorgarh	Nimbahera	Bhadesar
727	Vasaliya	3.15x1	Udaipur	Xen Rural-I Udaipur	Mavli
728	VEERPUR	6.3(3.15+3.1 5)	BANSWARA	BANSWARA	AEN (Rural, Banswara)
729	Vijaypur	6.30 (3.15+3.15)	Chittorgarh	Bengu	Bassi
730	Vijaypura	8.15	Sikar	LAXMANGARH(O& M)	NECHHWA
731	w/w	10	Sikar	SIKAR RURAL	Sikar (Rural)
732	Welcome Choraya	5	Chittorgarh	Nimbahera	Nimbahera(O&M)

۲

apel/

Page 24 of 24

Rajasthan Electricity Regulatory Commission Jaipur

Petition No.RERC/tariff/8/2000

filed by

Rajasthan Rajya Vidyut Prasaran Nigam Limited,

Mr. Arun Kumar, Chairman,

Mr. Shanti Prasad, Member,

Mr. Prabhakar K. Das, Member

Date of order: 24th March 2001

<u>ORDER</u>

1 The Secretary (Administration), Rajasthan Rajya Vidyut Prasaran Nigam Limited had submitted a petition before the Commission on 1st December 2000 on behalf of Rajasthan Rajya Vidyut Prasaran Nigam Limited (hereinafter referred to as 'RVPN') under section 26 of the Rajasthan Power Sector Reforms Act 1999, (Act 23 of 1999)(hereinafter referred to as the Reforms Act) for fixation of tariff for bulk supply and transmission of electricity for the years 2000-01 and 2001-02. This application was submitted in pursuance of resolution of Board of Directors dated 25.11.2000.

Rajasthan Electricity Regulatory Commission was established under the 2 provisions of the Electricity Regulatory Commissions Act 1998 (Act 14 of 1998), on 10th December 1999 vide Government of Rajasthan Gazette notification of the same date. The Commission became operational with effect from 2nd January 2000, on appointment of Chairman and a Member. The Commission had notified interalia Rajasthan Electricity Regulatory Commission (Conduct of Business) Rajasthan Electricity Regulatory Commission (Tariff) Regulations 2000, Regulations 2000 (hereinafter referred to as Tariff Regulations) and had issued order No.2 dated 22.4.2000 laying down the methodology, procedure and formats for furnishing information under sub clause (1) of clause 3 and clause 4 of the Tariff Regulations. The Government of Rajasthan promulgated the Rajasthan Power Sector Reforms Act 1999 (Act 23 of 1999) on 10th January 2000 and made it effective on 1st June 2000. The Commission set up under the Electricity Regulatory Commissions Act 1998, became the first Commission under 87 The bulk supply tariff determined by the Commission is based on the projected cost of power purchase by the petitioner after allowing reasonable escalation. There shall be no separate power purchase and fuel cost adjustment charge.

88 In case there is a large variation in the power purchase and fuel cost, the petitioner may take that into account at the time of next tariff filing or propose a power purchase cost adjustment formula for the approval of the Commission.

Rebate for timely payment

89 The Commission has analysed the provisions of tariff for central sector generating/transmission companies, agreements for bulk power supply with NPC, tariff orders for NTPC, NHPC and PGCIL. Considering these & working capital requirements, the Commission directs that <u>1.5% rebate shall be</u> <u>admissible to Discoms for payment of bill by them upto 3rd day of billing, 1%</u> <u>rebate thereafter for payment upto 25th day of billing. After 55 days of billing a</u> <u>late payment surcharge of 1.5% per month shall be chargeable from Discoms.</u>

Power factor levy/incentive

90 Power factor levy/incentive shall be effective after three months. In the meantime duly calibrated electronic meters capable of recording such readings on hourly basis shall be installed at all substations.

Directions to RVPN

The directions given by the Commission in this order are summarised below:

RVPN to be vigilant and ensure that tapping of exclusive supply lines of RVPN is not effected in future by other state/organization. (Para 23)

92 RVPN shall strive for rationalisation of determination of EHV loss in BBMB & Northern Region (NR) so that its impact on purchase from each power station is determinable in advance. (Para 32)

RVPN shall strive for EHV loss within the State to be reduced to the level of 5% in next five years. For the year 2001-02 a reduction of 0.08% be achieved. Steps taken by RVPN for this purpose and reduction in losses achieved should be reported to the Commission on quarterly basis. (Para 35)

94 The RVPN shall control EHV loss within the State as per directions in para
 37. (Para 37)

Vitran Nigam shall maintain minimum power factor of 85%. Requirement of Shunt capacitors for the year be assessed as per NREB studies. 50% of the required capacity shall be installed by RVPN and balance 50% by three Vitran Nigam @ 16.6% capacity. (Para 40)

96 Lagging kVArh draw in excess of 62% of KWh draw, measured at each substation and integrated for Vitran Nigam as a whole, shall attract a penalty of 4 paisa per kVArh with 5% annual escalation with effect from 1.4.2001. Lagging kVArh draw below 32% of KWh drawn shall earn an incentive at the same rate. (Para 40)

97 SLDC shall monitor, on computer, the MVAr draw/injection at power grid/BBMB interconnections at system voltage below 97% and above 103% at respective point. (Para 40)

98 SLDC shall formulate scheme of switching off of excess capacity of shunt capacitors in phases at system voltage from 100% to 103% and switching on of shunt capacitors in phases at system voltage from 100% to 97%. (Para 40)

RVPN and Vitran Nigams shall prepare a comprehensive power cut and load shedding scheme so that no sector suffers at the cost of other and all categories of consumers share the shortage. (Para 52)

100RVPN shall segregate account of generation, transmission & load
despatch.(Para 54)

101 RVPN should report status and review of order after three months of introduction of ABT regime. (Para 56)

102 RVPN shall finalise provisional rate for billing conveyed by Director finance and company affairs, RVPN vide letter dated 29.8.2000. (Para 60)

103RVPN shall enter into power station wise PPA based on GOI guidelines with
RVUN within 3 months of this order.(Para 62)

remain in force until any amendment to the tariff is approved by the Commission. This tariff shall become effective from 1st April 2001.

121. This order is made on March 24, 2001.

-sdsdsd-		
(Prabhakar K. Das)	(Shanti Prasad)	(Arun Kumar)
Member	Member	Chairman

Certified copy

(Prabhat Dayal)

Secretary

Rajasthan Electricity Regulatory Commission

Jaipur

RAJASTHAN ELECTRICITY REGULATORY COMMISSION, JAIPUR NOTIFICATION JAIPUR 24.05. 2008

No. RERC / Secy / Reg - 74 In exercise of the powers conferred under Section 181 read with section 86(1)(h) of the Electricity Act, 2003 (Act 36 of 2003) the Rajasthan Electricity Regulatory Commission after previous publication makes the following regulations namely:

1.0 Short title and applicability

- (i) These regulations shall be called as the "Rajasthan Electricity Regulatory Commission (Rajasthan Electricity Grid Code) Regulations 2008". In short REGC.
- (ii) These regulations shall apply to the Users of 33kV and above, which includes Transmission licensee, Generating Station located in the State including Independent Power Producers, Renewable Energy Power Plants, Generating or/and Transmission Companies connected to State Transmission System, Distribution Companies having HV/EHV consumers directly connected to State Transmission System, Open access customers interconnected to State Transmission System, and Traders.
- (iii) These Regulations supersede Part-1 of the Grid Code; earlier approved by Rajasthan Electricity Regulatory Commission (RERC) and published by Rajasthan Rajya Vidyut Prasaran Nigam Ltd (RVPN). The REGC shall be effective from the date of its publication in the official gazette.
- (iv) These Regulations shall also be applicable to the new Connections and equipments procured/provided for new works/replacements from the date the **REGC** is made effective. The existing Connections and equipments shall continue to operate till such time it is considered necessary. The operational aspects of the **REGC** shall have no such relaxation and shall be applicable with immediate effect.
- (v) The Regulations relating to Grid connectivity, Grid standards & safety standard as specified by the CEA under section 73 of the Act shall generally be complied with in addition to **REGC**.

(vi) These Regulations are covered in 16 Chapters:						
Chapter I	Short Title and Applicability					
Chapter II	GENERAL REQUIREMENT & BACKGROUND.					
Chapter III	DEFINITIONS.					
Chapter IV	MANAGEMENT OF THE GRID CODE.					
Chapter V	SYSTEM PLANNING.					
Chapter VI	CONNECTION CONDITIONS.					
Chapter VII	SYSTEM SECURITY ASPECTS.					
Chapter VIII	OUTAGE PLANNING.					
Chapter IX	OPERATIONAL PLANNING.					
Chapter X	SCHEDULEING, DESPATCH AND ACCOUNTING.					
Chapter XI	FREQUENCY, VOLTAGE AND NETWORK LOADING					
	MANAGEMENT.					
Chapter XII	CONTINGENCY PLANNING.					
Chapter XIII	INTER USER BOUNDARY SAFETY.					
Chapter XIV	OPERATIONAL EVENT/INCIDENT AND ACCIDENT					
	REPORTING					
Chapter XV	PROTECTION.					

Chapter XVI DATA REGISTRATION.

2.0 **General Requirement & Background** Chapter-II

The Central Electricity Regulatory Commission (CERC) under the Electricity Act 2003, Section 79(1)(h) has specified the Indian Electricity Grid Code (IEGC). The Electricity Act 2003, Section 86(1)(h) also mandates that the State Electricity Regulatory Commissions shall specify State Grid Code consistent with IEGC. Accordingly **REGC** is introduced.

REGC lays down the rules, guidelines and the standards to be followed by the Users to operate and maintain an efficient and coordinated State Transmission Close co-ordination amongst the **Users**, **SLDC** and the **Transmission Licensee** shall exist at all times for the purposes of effective frequency and voltage management.

The **SLDC** shall monitor the actual **Drawal** against the scheduled **Drawal** and shall regulate the internal generation/demand and maintain the schedule. **SLDC** shall also monitor the reactive power drawal and availability of capacitor bank(s).

The SGS shall follow the despatch instructions issued by SLDC.

The **Discoms** shall primilarly be responsible for managing its load and reactive power **drawal** as per instructions of **SLDC**.

- **11.3** Frequency Management: The nominal system frequency is 50Hz. All possible efforts shall be made to ensure that system frequency shall remain in the band of 49.0Hz to 50.5Hz.
- 11.4 Voltage Management: STU and/or SLDC shall carry out the load flow studies based on operational data from time to time to predict where the voltage problems may be encountered and to identify appropriate measures to ensure that the voltage remain within the prescribed limits. Based an such studies the SLDC shall instruct the SGS to maintain the specified voltage level at interconnecting points. SLDC and STU shall co-ordinate with the Discoms to determine voltage level at the interconnection points.

SLDC shall continuously monitor 400kV, 220kV, 132kV voltage levels at strategic sub-stations and take appropriate measures to control **STS** voltages which may include but not be limited to transformer tap changing, capacitor / reactor switching including capacitor switching by **Discoms** at 33 kV substations, operation of Hydro unit as synchronous condenser and use of MVAr reserves with **SGS** within technical limits as agreed to between **STU** and **SGS**.

RVUN and **IPPs** shall make available the up-to-date capability curves for all **Generating Units** to **SLDC**, as detailed in Chapter-VI, indicating restrictions if any, to allow more accurate system studies and effective operation of the **STS**. The **CPPs** shall furnish the net reactive capability available for Export to/Import from **STS**.

The **Discoms** shall participate in voltage management by providing Local VAR compensation as far as possible, in low voltage system close to load points not depending on **EHV Grid** for reactive support.

11.5 Network Loading Management: The SLDC shall carry out the periodic studies of the intra-state network loading at least once a year to assess the transfer capability of the state as a whole as well as **Discom** wise and post such information on its website. This shall form the basis for approving Short Term OA transaction at the inter state level.

12.0 Chapter -XII CONTINGENCY PLANNING

- **12.1** General: The recovery process is to be followed by all the Users in the event of contingency i.e. total or partial blackouts of STS or Regional Transmission System to achieve the fastest recovery taking into account the essential load, Generator capabilities and system constraints.
- **12.2 Contingency Planning Procedure:** The contingency planning and blackstart procedure for the **State Transmission System** shall be as per Load Despatch & System Operation Manual.
- 12.3 Restoration Procedure: The restoration procedure for STS shall be prepared by SLDC for the following contingency:
 - (i) Total system black out
 - (ii) Partial System Blackout
 - (iii) Synchronisation of System Islands and System Split (separation)

The procedure shall be in conformity to the Recovery Procedure of the **Northern Region** prescribed under **IEGC** to be updated with new network parameters.

The restoration process shall take into account the generator capabilities and the operational constraints of Region and **STS** in achieving normalcy in the shortest possible time. The Users should be aware of the steps to be taken during the **Grid Disturbance** and system restoration process.

12.4 During the restoration period as certified by SLDC the provision of ABT shall remain

RAJASTHAN RAJYA VIDYUT PRASARAN NIGAM LIMITED. [Corporate Identity Number (CIN):U40109RJ2000SGC016485] (Regd. Office: Vidyut Bhawan, Jan Path, Jyoti Nagar, Jaipur - 302 005) OFFICE OF THE SUPERINTENDING ENGINEER (PROJECT & PLANNING) ① +91-141-2740623, Fax:+91-141-2740794; e-mail: se.pp@rvpn.co.in; website;www.rvpn.co.in

No. RVPN/SE(P&P)/XEN -2/AE-III/ F. /D 17 3 Juipur, Dt. 13 12 20 22

Member Secretary

Northern Regional Power Committee, 18-A, Shaheed Jeet Singh Marg, Katwaria Sarai, New Delhi-110016

Sub: Submission of agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'. Dear Sir,

On the above captioned subject, kindly find enclosed herewith the agenda note for Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund. Summary of the scheme is mentioned below:-

S. No.	Scheme details	Estimated Amount	
		(Rs. In Cr.)	
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur Vidyut Vitran Nigarn Limited (JdVVNL)	296.85	

Enclosure:

- 1. Agenda Note of JdVVNL
- 2. Annexure A- DPR provided by JdVVNL
- 3. Annexure B- RERC Order dated 24.03.2001
- 4. Annexure-C- Rajasthan Electricity Grid Code, 2008
- 5. Annexure-D- Format A5: Appraisal by STU

C.Meena) Chief Engineer (PP&D)

d1

Format A5 Page 1 of 1

Brief Details of the Project Appraisal by CTU / STU / RPC

ltem	Detail	s to be filled by Applicant Utility				
Appraisal By:	STU СТU	RPC				
Date of Submission to CTU / STU / RPC for approval	Scheme was submitted to Rajasthan 28,10,2022.	Raiya Vidyut Prasaran Nigam Ltd. (STU) by JdVVNL on date				
Name of the Scheme	Implementation of Automatic Reactive	Power Solutions at 33/11 kV substations in Jodhpur DISCOM				
Copy of the Appraisal Report by CTU / STU / RPC is Attached at Annexure	Yes No					
	[DPR enclosed at Enclosure-1)]					
1000	Summary of Proposal Appraised	The DPR has been prepared so as to improve & strengther the operational reliability, enhancement of system, real-time data capturing and better management of reactive power.				
Summary of observations from CTU/ STU/RPC	Technical Observations	As per the order of Rajasthan Electricity Regulator Commission (RERC) dated 24.03.2001, 50% of the tota MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). This project report proposes installation of 1830 MVAR which is above the target of 1660 MVAR, as such 1660 MVAR may be considered for approval of the competent authority.				
Appraisal Report	Financial Observations	As per guideline/procedure for disbursement of funds from PSDF in category 5.1(b), this scheme may be posed for funding/ grant from PSDF fund on 90% basis.				
	Compliance of Grid Standards / Codes by the Applicant	All the grid standards, IS, IEC required, shall be followed for implementation of the scheme				
	Limitations / Shortcomings pointed out by CTU/STU/RPC if any	NIL				
	Recommendations of CTU/STU/RPC	The scheme may be posed for funding/ grant from PSDF fund.				

Date -

Chief Engineer (PP&D) RVPN, Jaipur

Agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'l'.

I

The proposal herein is to accord approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jodhpur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'.

II

Power System Development Fund (PSDF) provides grant for improvement of Transmission System. PSDF provides fund for the following categories-

- a) Creating necessary transmission system of strategic importance based on operational feedback by load dispatch centers for relieving congestion in interstate transmission system and intrastate system which are incidental to ISTS.
- b) Installation of shunt capacitor, series compensators and other reactive energy generators including reactive energy absorption, dynamic reactive support etc. for improvement of voltage profile in the Grid.
- c) Installation of standard and special protection schemes, pilot and demonstrative projects, projects for setting right the discrepancies identified in the protection audit on regional basis, any communication/ measurement / monitoring schemes including installation of Phasor Measurement Units (PMUs) etc.
- d) Renovation & Modernization of transmission and distribution system for relieving congestion.
- e) Any other scheme/project in furtherance of the above objectives, such as conducting technical studies and capacity building etc.
- f) Other schemes benefitting large number of utilities collectively and having a significant impact towards the power system development and Grid operation, on case to case basis.

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(%age)
			(Rs. In Cr.)		
1	Installation of Capacitor	22.08.2022	296.85	22.08.2022	90%
	Banks on 11 KV Side				
	33/11 KV Substations of				
	Jodhpur Vidyut Vitran				
	Nigam Limited				
	(JdVVNL)				

Presently, scheme detailed as under are posed for approval of funding from PSDF.

PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Brief note on the scheme-

- Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
- 2. In this regard, JdVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.
- 3. It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
- JdVVNL proposes installation of *capacitor banks at 911 Nos. of 33/11 kV substations* out of total 2337 Nos. of substations spread across 12 circles and 10 districts of Rajasthan. *Total MVAR installation will be 1829.52 MVAR.* Detailed list of these substations have been enclosed with DPR.
- 5. Methodology adopted by JDVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about '*real time*' power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.
- 6. Approximately 30 lakh consumers at these 911 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- 7. Total cost of the scheme comes around 296.85 cr. for which detailed cost estimated have been enclosed with the DPR.

Detailed Project Project (DPR) is placed as Annexure-A.

Appraisal by the STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd. (RVPNL))-

RVPNL understands that proposal by JDVVNL to install 911 Nos. of capacitor banks at 11 kV side on their 33/11 kV substations in technically and financially justified up to the maximum installation of 1660 MVA.

As per the order of Rajasthan Electricity Regulatory Commission (RERC) dated 24.03.2001, 50% of the total MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). (Copy of the order enclosed as Annexure-B).

Further, The clause no. 11.4 of Rajasthan Electricity Grid Code, 2008 states that "The DISCOMs shall participate in voltage management by providing Local VAR compensation as far as possible, in low voltage system close to load points not depending on EHV Grid for reactive support." (Copy of the clause enclosed as Annexure-C).

This project report proposes installation of approx. 1830 MVAR which above the target of 1660 MVAR. Thus, upper limit of 1660 MVAR may be considered as per appraisal of RVPN (STU). (Appraisal by STU in Format-A5 has been enclosed as Annexure-D).

Ш

The agenda is hereby placed before NRPC for approval, after appraisal of RVPN (STU) in Annexure A5 of following scheme for further submission to NLDC-PSDF for availing 90% grant:

S.	Scheme details	Estimated Amount
No.		(Rs. In Cr.)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV	296.85
	Substations of Jodhpur Vidyut Vitran Nigam Limited (JdVVNL)	

18

JODHPUR VIDYUT VITRAN NIGAM LIMITED

DETAILED PROJECTREPORTFORIMPLEMENTATION , OF AUTOMATIC REACTIVE POWER SOLUTION ON 33/11 KV SUB STATIONSOFJODHPUR DISCOM

TOTAL ESTIMATED COST: 'Two Hundred Ninety Seven crores (SayRs.296.85crores) only

> JODHPUR VIDYUT VITRAN NIGAM LIMITED Corporate Identity Number (CIN) – U40109Rj2000SG016483 Regd. Office : New Power House, jodhpur – 342 003 web site: www.energy.rajasthan.gov.in/jdyvnl_

Format A1 Page 1 of 1

79

SUMMARY OF PROPOSAL

For Official Use- To be filled by the Nodal Agency of PSDF

Project ProposalNo: -----

Date of Receipt: -----

		Organization / Project Entity
0	ame of the requesting rganization / Utility	Jodhpur VidyutVitran Nigam Limited., Jodhpur
. S	ummary of Project/ Scheme / /	Activity
	Name and location of the Project/Scheme/Activity:	Implementation of Automatic Reactive Power Solution on 33/11 KV substations in Jodhpur DISCOM
b.	Objective of the Project/Scheme/Activity:	The objective is to automate the reactive power and optimize the performance of the distribution grid of Sub Stations of JdVVNL. Jodhpur
C.	Authorized person for this Project/Scheme/Activity:	Name: Sh. PramodTak, Managing Director, JDVVNL E-mail ID: md.jdvvnl@rajasthan.gov.in Land Line: +91 291 2742229 Mobile No: +91 9413359001 Fax No : +91 291 2741870
d.	Natare of the Project/Scheme/Activity: Interstate/Intra-State	Intra-State
е.	Identified Beneficiaries	The State Grid of Rajashtan and Regional Grid of Northern Region of India. The Project will strengthen the Medium Voltage Network of the State which will in turn benefit the Distribution Licensees, the JdVVNL, Jodhpur.
ſ.	Merits of the scheme	Better Management of Volt-VAR
g,	Limitations, if any	Installation process may take considerable time.
h.	Time frame of Implementation	24months
i,	Estimated Cost of Project/Scheme/Activity:	Rs. 296.85Crores
ł	Category under which the project is classified (Please refer Para 5.1 of the Guidelines/Procedure)	5.1 (b) as per Guidelines/Procedure for Disbursement of Fund from Power System Development Fund

03 08 2022

(M.L. BENDA) Superintending Engineer (PPM) Ju, V.V.N.L., JODHPUR

Format A2 Page 1 of 37 8

DETAILED PROPOSAL (DP)

1. DETAILS OF THE REQUESTING ORGANIZATION / PROJECT ENTITY

1.1 Details of Organization / Entity

Name of Organization / Entity	Jodhpur VidyutVitran Jodhpur	Nigam	Limited.
Acronym or Abbreviation (if applicable)	JdVVNL		

1.2 Details of Head of the Organization

Name (Mr/Ms/Mrs)	Mr. PramodTak
Designation	Managing Director
E-mail Address	md.jdvvnl@rajasthan.gov.in
Land line No	+91 291 2742229
Fax No.	+91 291 2741870
Address	New Power House, Basni, Jodhpur
City	Jodhpur
Postal Code	342003

1.3Details of Project Incharge/ Project Manager (Authorized Person) for this project / scheme / activity (Not below the rank of Dy. General Manager / Superintending Engineer)

Name (Mr/Ms/Mrs)	Mr. M.L.Benda
Designation	Superintending Engineer (PP&M)
E-mail Address	seppmju@gmail.com
Land Line No.	
Mobile No	9413359040
Fax No:	NA
Address	New Power House, Basni, Jodhpur
City	Jodhpur
Postal Code	342003

Any change in above mentioned details may be notified to the Nodal agency of PSDF immediately.

8 2.02 (M.L. BENDA) Superintending Engineer (2014) JU. V.V.N.L., JODHPUR

Format A2 Page 2 of 37

2. Justification of the Proposal

2.1 Analysis of the Objective

GENERAL PROFILE OF JODHPUR DISCOM

S.No.	Particular	UNIT	March, 2022
1	Area	Sq. Km	182509
2	Population 2011 (as per 2011 Census)	Crore	2.00 (2.00,10,828)
3.	Nos. of O & M Circles	Nos.	12
4	Nos. of Q & M Divisions	Nos.	48
\$	Nos. of O & M Sub- Divisions	Nos.	193
6	Nos. of 33KV Sub Stations	Nos.	2337
7	Nos. of Consumers (Regular)	Lacs	45.61
8	No. of Ag. Consumers (PDC)	Lacs	4.26
9	Average Monthly Energy Draw (LU)	w	24478.40
10	Average Monthly Energy Sold (LU)	w	19312.16
14	Average Monthly Rev Assessed (Rs. Crores)	CR.	1472.71
12 .	Average Monthly Rev. Realisation (Rs. Crores)	CR.	1480.90
13	Percentage Realisation	96	100.56
14	T&D losses As on MAR, 2022.	16	21.11
15	No. of 11kv Feeders	Nos.	11690
16	No. of Urban 11kv Feeders	Nos.	1253
17	No. of Rural 11kv Feeders	Nos.	10437

di 0308 2822

(M.L. BENDA) Superintending Engineer (FPM) Ju. V.V.N.L., JODHPUR

The problem / constraint to be addressed:

Format A2 Page 3 of 37

The reasons for high AT&C Losses in the state are primarily the following:

- Non availability of reliable Reactive Power compensation solution, resulting in high technical losses.
- Deficiency in the organizational setup (O & M)&Financial Support from Government Power Department.
- Electricity consumption in the state consists mainly of domestic (17.84%), Agriculture (60.52%), industrial/commercial category (10.10%) and water works and other category (11.54%).
- The Department is also plagued by shortage of manpower. All these factors lead to inefficiency of the power sector. Therefore reduction of AT&C Losses requires a very committed road map/policy of the Government by considering electricity as a business commodity for essential contribution towards the growth of the economy (resources) while notwithstanding the social obligation in providing energy as a
 basic need.
- The state is forced to maintain a high HT line length ratio owing to the extremely extended area 182509 KM where electricity is transmitted to long distances due to which frequency and voltage could not be maintained to specified limits..Hence voltage at receiving end drastically drops and leads to drawl to excess current.Same can be understand by formula of Power, P(KW) = √3xVxIxCosø, according to this formula V∝ I.
- This distributed population not only increased the capital investment requirements
 of the state but also makes the maintenance and monitoring of the network very
 difficult.
- Defective meters, tampering and power theft are the main causes for high AT&C
 losses. With prepaid metering the AT&C losses in the State may improve
 ⁺ drastically and also alleviate shortage of manpower.
- Formulation of Consumer Call Centre and receiving identification of theft from public domain, escalating the same for detection on online auto shifting mode.

05 08 2022 (M.L. BENDA)

(M.L. BENDA) Superintending EngineCorpeM) Ju. V.V.N.L., JODHPUR

JdVVNL have envisaged following measures for bringing down AT&C losses;

- Installation of Automatic Power Factor Control (APFC) Capacitor banks at all 33/11 kV transformers.
- Identification of loss prone area by tagging of consumers with DTs and feeders for energy accounting.
- Load verification of agriculture category during peak session and ensuring billing accordingly.
- > Improvement in HT/LT ratio.
- > Formation of Special Task Force for raid against theft.
- Implementation of IT enabled services for power consumers. This has great potential in reducing losses and providing consumer friendly services.
- > Smart Metering under RDSS Scheme.
- > Feeder and DT metering for accurate energy accounting.
- Introduction of modern technologies to monitor reliable and quality power supply.

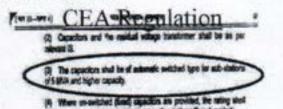
2/08/2022

(M.L. BENDA) Superintending Enginest (MPM) Ju. V.V.N.L., JODHPUR

Introduction Of APFC Panel

In present condition, the 11 KV capacitor bank is controlled by manually switched devices like Isolators/Load Break Switch or circuit breakers. This old practice has disadvantage as compared to modern automatically switched Capacitor Bank.

- The ON/OFF operation of cupacitor bank is depending on one operator and it is difficult to control on switching ON/OFF the capacitor bank as per varying load condition.
- There are only two possible conditions in manually switched banks, complete bank is either fully in their circuit or out of circuit and reactive power compensation cannot be closely matched with the varying load condition.
- This results in over compensation or under
 compensation of reactive power at varying load condition.
- If one of the capacitor units from the capacitor bank is failed, whole capacitor bank will become idle.

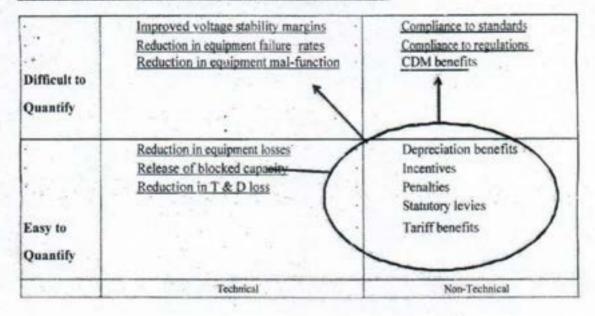

Following are the some advantages to propose the Automatic power factor correction systems up to 11 KV.


The APFC scheme is to provide an effective control of capacitor bank installations in Substations to maintain power factor under varying load conditions, for any sub-station load on Transformer changes during a 24 Hour daily load cycle. This variation of load depends upon type of load i.e. Urban Load, Rural load, Agricultural Load, Industrial load etc. The load pattern will be different for different loads. Thus load variation will follow certain pattern and which could be divided into four or six periods in a 24 Hour daily Format A2 Page 5 of 37

load cycle. Power factor would also vary and at the same time actual requirement of Capacitors in circuit will also vary. If steps are provided with capacitor banks to switch them as required it will help the Electricity Supply Authority to maintain the power factor at desired level throughout the day.

This load variation has been observed to change from 8 % to 68 %. When conventional fixed type capacitor banks are used the capacitor bank will provide compensation of certain level and in an event the bank is not removed from the circuit at low load, it will provide overcompensation to the system. In conventional fixed type capacitor bank removing required capacitor cells from circuit is very cumbersome process as the lineman/operator has to switch on Breaker, Isolator, disconnect the fuse to isolate the capacitor cells and switch ON all the equipments once again. This will again depend upon availability of trained man power for such purpose.

Overcompensation has harm full effects on Capacitors, switching devices. Outdoor type H.T. Capacitor bank with facility of automatic switching of required number of steps with the help of capacitor switch. The bank comprising of externally single star connected Capacitor bank, 0.2% to 0.4% Series Reactors for switching inrush current suppression at neutral end, RVT for unbalance protection.



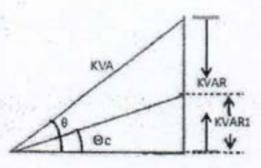
(M L. BENDA) Superint that Englisher (PPM)

Format A2 Page 6 of 37

88

BENEFITS OF POWER QUALITY IMPROVEMENT

031-8/2022 di

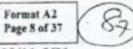

(M.L. BENDA) Superintending Eng. 1 Ju, V.V.N.L., JODHPUL

Format A2 Page 7 of 37

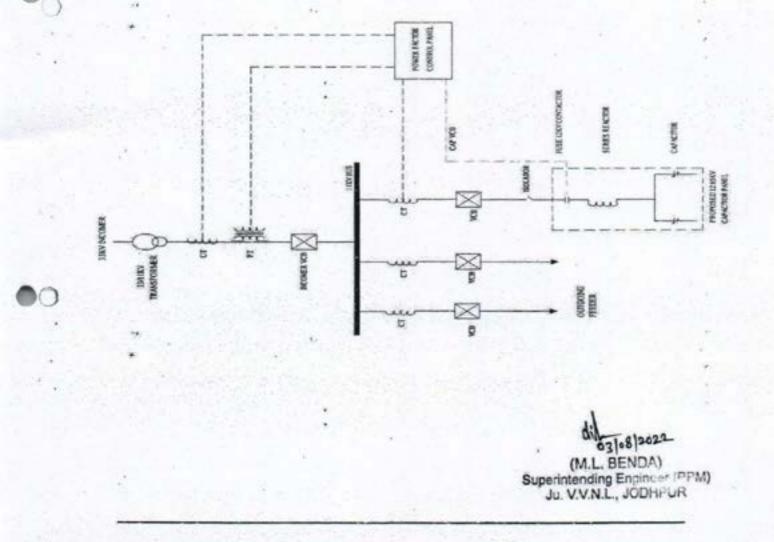
DETERMINATION OF THE CAPACITOR BANK RATING

The size of capacitor unit (or Bank) required may be determined from the following formula:

 $Q = P (\tan \theta - \tan \theta c)$ Where: Q = KVAR requiredP = Active power in KWCos θ = Power factor before compensation Cos θc = Power factor after compensation Tan θ = Perpendicular/Base

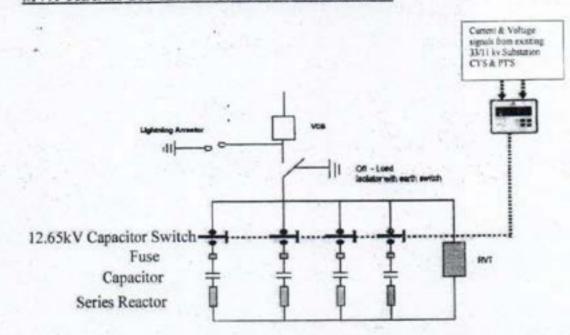

KW

Tan θ = KVAR/KW Tan θ c = KVAR1 /KW KVAR = KW (Tan θ) KVAR1 = KW (Tan θ c) (KVAR-KVAR1) = KW (Tan θ -Tan θ c) Q = P (tan θ - tan θ c)

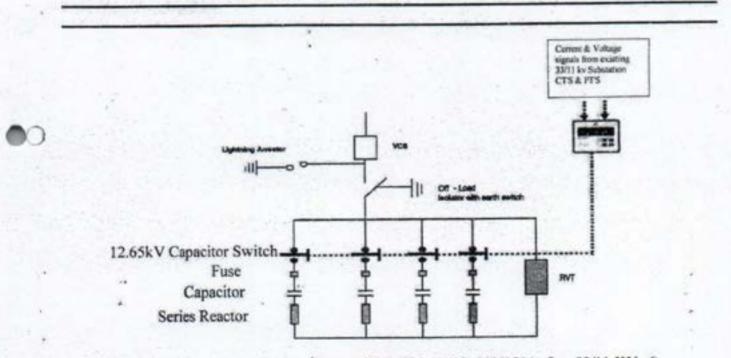

Table Indicating capacitor size in KVAR for each KW Load for correction from different P.F to higher P.F

	1000				THE AUR	a line	STATI	Second Second	TARGET		-
		Contraction of the					1.140		QP.	1-76	(Ruar) 4 Ryar
100		0.00	0.82	(0.85)	0,88	0.00	0.9Z	0,94	0.96	0.98	1.00
1053	1000	经济 行出	1		R AC	and the second second	1000 1 21		BANKED		Sector 1
3.18	0.10	2.43	2,48	7.56	2.64	200	2.75	7.82	230	2,58	330
2.96	0.32	1 2.21	2.26	2.34	2.42	240	2.53	2.60	237	2.76	2,306
2.77	0.34	2.02	2.07	2.16	2.23	2220	2.34	2.41	2.86	2.66	2317
2.59	0.36	1.84	9,89	1.97	2.05	230	2.17	2.23	2,00	2.39	239
2.43	0.38	1.60	9.73	3.413	1.09	1,845	2,01	2.07	2.84	2.23	233
3.29	0.40	1.54	1.59	1.67	1.75	1,01	1.87	1,93	z20	2.09	230
2.16	0.42	1 1.41	7.46	1.54	1.62	12-11	1.73	1,80	1. 1. 27	1.96	2.96
2.04	0.44	1 1.29	9.34	3.42	1,50	126	1,61	3.64	2 1.75	1.414	2.04
1.93	0.46	1.34	1.23	9.31	3.39	1,05	1.50	1,57 0	1 1.44	1,73	1.93
1.03	0.48	1.08	8,53	3.21	1.29	1.214	1,40	1,47	1.44	1.62	1.80
1.73	0.50	0.98	9.03	3,33	1,19	1.215	1,31	1.37	1,85	7.63	123
1,64	0.52	0.89	0.94	1.02	1,10	120	1,22	1.28	5 T.M.S.	1.44	1.84
1.56	0.54	0.81	0,86	0.94	1.02	1207	1.13	1.20	1.47	1.36	1.56
1.48	0.56	0,73	0.78	0.86	0.94	1,00	1.05	3,32-9	1.10	1.28	1.88
1,40	0,58	0.65	0,70	0.78	0.86	240	0.98	1.04	2 4 2 4	1.20	1.00
1.33	0.60	0.5#	0.63	0.71	0,79	0.85	0.91	0.97	1.04	1.13	
1.30	0.61	0.55	9.60	0.68	0.76	0.01	0.87	0.94	1.01	1,10	1.10
1.27	0.62	0.52	0,57	0.65	0.73	0.70	0.84	0.91	0.99	1,06	1.27
3,83	0.63	0.48	0.53	0.61	0.69	0.75	0.81	0.97	0.94	1.03	1.23
1,20	0.64	0.45	0.50	O.L.	0.66	0.12	0.77	0.84	0.82	1.00	1.20
1.1.7	0.45	17 D.98	1040	0.4.6	HARD BR.	CO.68 1	THE OWNER WHEN	ALC: NO.	CORB	-0.90	(1.17)
1.14	0.00	0.3%	0.44	THE OWNER OF	0.60	0.65	0.71	0.78	ORS	0.54	1.14

0012012 ML Superintendit g E L. V.V.N.L. JODI


SÍNGLE LINE DIAGRAM FOR PLACEMENT OF APFC PANELAT 33/11 KV SUBSTATIONS

11


....

Format A2 Page 9 of 37

SINGLE LINE DIAGRAM PROPOSED for APFC PANEL ON 3.15, 5.8 and 10 MVA TRANSFORMER AT 33/11 KV SUBSTATIONS

1980 KVAR APFC Bank with 3 Steps of 396+792+792kVAr for , 33/11 KV, 3.15& 5 MVA Transformer

3960 KVAR APFC Bank with 4 Steps of 792+792+1188+1188kVAr for . 33/11 KV. 8

03 08 2022 (M.L. BENDA) Superintending Eng: PPM) JU. V.V.N.L., JOL

Format A2 Page 10 of 37

Objective of the project / scheme/ activity:

Maintaining voltage by reactive power management

Voltage Control in an electrical power system is important for proper operation for electrical power equipment to reduce technical losses, prevent damage to equipment's, overhead lines etc. In general terms, decreasing reactive power causes voltage to fall while increasing it causes voltage to rise. When reactive power supply lowers voltage, current must increase to maintain power supplied, causing system to consume more reactive power and the voltage drops further. If the current increases too much, transmission lines go off line, overloading other lines and potentially causing cascading failures.

This can be controlled by managing the reactive power in the system. To introduce Reactive Power, capacitors are the cheapest and the simplest means. By introducing Switched Capacitor Banks, precise and real time compensation of Reactive Power can be achieved. By achieving precise Reactive Power Compensation, overall healthy voltage profile can be achieved.

Advantages to JDVVNL:

a. Improvement in Voltage level.

b. Reduction of losses in lines and transformers.

c. Reduction of over loading means less heating cables, conductors, transformers etc.

d. A better utilization of the capacity of the generators, transformers, switchgear, cables lines, etc., means increase in efficiency of the system.

e. Reduced depreciation charges on capital outlay and less capital investment.

f. Reduced reactive power drawn charges to NRLDC

g.Reduction in T & D loss (through reduction in current)

Additional units available for sale

ii. Lower Impact on environment

h.Release of Blocked Capacity (through reduction in apparent power)

i. Defer Capital Investment

ii. Better utilization of fixed asset/capital investment

i.Better asset management (operation at lower temperatures)

- Lower life cycle cost
- ii. Longer life of equipment & lower replacement cost Better voltage profile

(M.L. BENDA) Superintanding Engineer (PPM) Ju. V.V.N.L., JODHPUR Name:

Date: 03 .8 2022

Page 12 of 140 (A

(Authorized Representative)

Format A2 Page 11 of

Required physical additions/equipment in power system

As per BOQ and the DPR.

- Financing and other commercial details 90% grant under PSDF.
- Merits and limitations (if any) in the implementation of the project / scheme / activity Thedeficiencies in the oldsystemare expected to be remove provided the project is funded with full grant. How ever, training of the engineers to familiarize with the new state of artequipment's will have to be looked into.

2.2 Identified Beneficiaries of the Project

The beneficiary of the schemes isJodhpur VidyutVitran Nigam Limited. Jodhpur, State Power utilities suffer from frequent load shedding, tripping due to over loading of transformer resulting in loss of revenue. This system will provide much needed relief to the already overloaded and stressed grid sub stations of JdVVNL.

2.3 Identified Source of funding

90% funding is being proposed through PSDF for installation of 911 Nos. Automatic Reactive Power Solution on 33/11 KV substation in Jodhpur DISCOM in the general interest of providing better power supply to the consumers as JdVVNL is not financially sound.

Contribution from Internal Sources:

10% through internal funding.

Contribution from External Sources:

No external borrowing is envisaged as the project is planned for 90% funding through PSDF and 10% through internal funding.

2.4 Details of Activities for project / Scheme / Activity

Process of implementation

The project will be implemented in following phases:

 Installation of automatic reactive power solution system equipment; S/I/T/C and FMS of Capacitor Cubical Panels, Outdoor Kiosk VCB, Isolator and allied equipment's.

(M.L. BENDA) Superintending Engineer (PPM) Ju. V.V.N.L., JODHPUR Signature: Name:

Date: 02 08 2022

Page 13 of 140

(Authorized Representative)

Present the voltage profile for SS worsened due to load growth in last 5 years and need to installCapacitor Banks in s/s where the voltage profile needs improvement.

To achieve Volt/ volt ampere reactive optimization and Energy conservation through voltage reduction JdVVNL is proposing 911 sub stations for Automatic Reactive Power Solution system as per below list:

Sr. No.	Name of Substations	Transformer Capacity (MVA)	Sub Station/ Transformer Peak Loading (MW)	Voltage
1	NA STUANUA	5	4.56	10.3
2	MATHANIA	5	4.47	10.3
3	UMMED NAGAR (JOOD)	5	4.52	10.2
4	5440000A-00000	5	4.98	10.2
5	RAMPURA+RIICO	5	5.00	10.2
6	DALACAN .	3.15	2.78	10.2
7	RAJASANI	3.15	2.83	10.2
8	Section and recent	3.15	3.12	10.5
9	NEWRA ROAD	3.15	3.09	10.5
10		3.15	3.05	10.5
11	KIRMARSAIYA	5	4.78	10.5
12		5	4.87	10.5
13	PUENEER KOOTRI	3.15	2.94	10.3
14	BHENSER KOOTRI	3.15	2.98	10.3
15	1000	3.15	2.94	10.3
16	000	3.15	2.80	10.3
17	KHARDA	3.15	2.95	10.2
18	KHARDA	3.15	3.02	10.2
19	NEWRA GAON	3.15	3.05	10.3
20	NEWIA GADIN	5	3.00	10.3
21	GAGADI	3.15	2.82	10.5
22	GRANN	3.15	2.80	10.5
23	MANDIYAI KALLA	5	4.78	10.5
24	MANDIN ALLA	5	4.82	10.5
25		3.15	2.75	10.5
26	BALARWA	3.15	2.69	10.5
27		3.15	2.83	10.5

Date: 03 08 2022

Signature:

Name:

(Mal 1407140) Superintending Engr. or (DTM) (Authorized Representative) Ju. V.V.N.L., JOURPUR

Format A2 Page 13 of 37

S

28		5	4.69	10.5
29	MINIYARD TINWARI	5	4.78	10.5
30		3.15	2.74	10.2
31	GHEWARA	5	4.34	10.2
32		3.15	2.62	10.2
33	PANCHALA	3.15	2.65	10.2
34		3.15	2.81	10.2
35	BADA KOTECHA-II	3.15	2.76	10.2
36		3.15	2.81	10.3
37	BADLA BASNI	3.15	2.77	10.3
38		3.15	2.72	10.3
39	A SALE OF THE SALE	3.15	2.94	10.2
40	MANDIYAI KHURD	3.15	3.01	10.2
41	MALUNGA -	3.15	3.10	10.2
42	000404004	3.15	3.00	10.3
43	GOPASARIYA	3.15	3.05	10.3
44	BHALASARIYA	3.15	3.09	10.2
45		3.15	3.00	10.5
46	BANA KA BAS	3.15	3.07	10.5
47	-	3.15	2.82	10.2
48	тнов	3.15	2.73	10.2
49	HARLAYA	3.15	3.01	10.5
50	00144	3.15	2.99	10.5
51	OSIAN	5	4.70	10.5
52	CUEDAL	3.15	2.77	10.5
53	CHERAI	3.15	2.69	10.5
54	SINWARO KI DHANI (3.15	2.85	10.3
55	SIRMANDI)	3.15	2.88	10.3
56	ARAL RUODI	3.15	3.05	10.1
57	AKAL KHORI	5	4.78	10.1
58	SAMRAU	3.15	3.07	10.2
59	SAMINAU	3.15	2.94	10.2
60	SOMERI BHAKARI	3.15	2.88	10.3
61	BHIMSAGAR	3.15	2.92	10.4
62	Dennyishishin	3.15	3.01	10.4
63	BERDO KA BAS	3.15	2.98	10.3
64	DENDO IN DIG	3.15	2.89	10.3
65	RAWAT BERA	3.15	2.77	10.4
66	NARINADI BHED	3.15	3.02	10.2
67	HAMIOWI WILLO	3.15	3,05	10.2
68	JAKHRO KI DHANI	3.15	2.78	10.4
69		3.15	2.71	10.4

"Date: 03 8 2022

4

Signature: Name:

P(M.E.GENDA) (Superintending En oper (POM) du. V.V.N.L., JODINPUTC (Authorized Representative)

Format A2 Page 14 of 37 23

70		3.15	2.54	10.5
71	BARAKALLA	3.15	2.59	10.5
72		3.15	2.43	10.2
73	HATUNDI	3.15	2.62	10.2
74	SILLI	3.15	2.62	10.2
75	Sector Sector Sector	3.15	2.59	10.2
76	GINGALA	3.15	2.51	10.2
77	RATRANADA	3.15	3.10	10.2
78		3.15	2.78	10.2
79	CHANDRAKH	3.15	2.82	10.2
80		3.15	2.92	10.2
81		3.15	2.75	10.5
82	DHANARI KALLA	S	4.31	10.5
83		3.15	2.71	10.2
84	CHINDARI	3.15	2.75	10.2
85		3.15	2.89	10.3
86	NANDIYA KHURD	3.15	3.01	10.3
87		3.15	2.91	10.2
88	JELAV NADI	3.15	2.66	10.2
89		3.15	2.91	10.3
90	JETIYAWAS	3.15	3.03	10.3
91	SELVI NADI(RAIKORIYA)	3.15	2.98	10.3
92		3.15	3.08	10.4
93	TAPU	3.15	3.15	10.4
94	NOTES	3.15	3.09	10.2
95	NOSER	5	4.75	10.2
96		3.15	2.80	10.5
97	KANKRALA	3.15	2.95	10.5
98	and the second second second	. 3.15	2.77	10.5
99		3.15	2.62	10.2
100	PADASALA	3.15	2.78	10.2
101		3.15	2.68	10.2
102	NIMBO KA TALAB	3.15	2.82	10.2
103	MINDO M. I ALAD	3.15	3.02	10.2
104	PALLI	3.15	2.91	10.3
105	THE	5	4.61	10.3
106	KHEDAPA	3.15	2.63	10.5
107	on control	- 5.00	4.24	10.5
108	ANWANA OLD	3.15	2.88	10.4
109	THE REAL PROPERTY OF THE PROPE	3.15	2.83	10.4
110	BIRAI	3.15	2.90	10.2
111		3.15	2.86	10.2

Date: 03 08 2022

di

Signature: Name:

Page Mor BENDA) (Authorized Representative) Superintending Engine (IPPM) Ju. V.V.N.L., JODHPUK

Format A2 Page 15 of 37

112		3.15	2.73	10.2
113	DANWARA	3.15	2.82	10.2
114		5	4.74	10.5
115	BAORI	5	4.83	10.5
116	POONIYO KI BASNI	3.15	2.91	10.3
117	and the second se	3.15	2.58	10.5
118	KAJNAU KHURD	3.15	2.80	10.5
119		3.15	3.02	10.3
120	KAJNAU KALLA	3.15	2.72	10.3
121	ANWANA NEW	3.15	2.94	10.4
122		3.15	2.86	10.5
123	MANAL	3.15	2.72	10.5
124	INDROKA	5	4.94	10.5
125		3.15	3.14	10.2
126	SALAWAS	5	5.04	10.2
127	Service and the service of the servi	5	5.13	10.2
128	DHANDHORA	5	4.08	10.5
129	USED ADTOURD	3.15	2.86	10.2
130	HEERADESHAR	3.15	2.78	10.2
131	DHORU	3.15	2.69	10.2
132		3.15	2.77	10.2
133	RAJLANI	3.15	2.60	10.2
134	DEVARI	3.15	2.83	10.2
135	HINGOLI	5	4.47	10.2
136	CHICHICUMUM .	3.15	2.98	10.2
137	GAJSINGHPURA	3.15	2.72	10.2
138	RAMPURA	5	4.56	10.2
139	1000	3.15	2.89	10.2
140	ASOP	5	4.56	10.2
141	ARTIYA KALLAN	3.15	2.74	10.2
142	DADAU VILLIDO	3.15	2.91	10.2
143	BARNI KHURD	5	4.51	10.2
144	MANGERIYA	3.15	2.68	10.3
145	DILADA	5	4.43	10.5
146	BILARA	5	4.34	10.5
147	SOJATI GATE	5	4.58	10.5
148	SUMITOATE	5	4.66	10.5
149	DIWAN JI KI PIAO	3.15	2.67	10.5
150		3.15	2.51	10.5
151	KHARIYA MITHAPUR	3.15	2.78	10.5
152		5	4.50	10.5

Date: 03/08/2022

de

Signature:

Name:___

Pigelit of BioNDA) (Authorized Representative) Superintending Engineer (PPM) Ju. V.V.N.L., JODHPUR

Format A2

153	JHAK	3.15	2.94	10.5
154	USUBBUUE	3.15	2.69	10.5
155	UDALIYAWAS	3.15	2.63	10.5
156	DANIEL CADA	3.15	2.71	10.5
157	RANSI GAON	5	4.27	10.5
158		5	4.75	10.5
159	PIPAR CITY	5	4.66	10.5
160		1.6	1.46	10.5
151	SATHIN	3.15	2.94	10.5
162	KHARIYA KHANGAR	3.15	2.71	10.2
163	DADUMACAD	3.15	2.74	10.5
164	PABUNAGAR	3.15	2.67	10.5
165	AMRIT NAGAR	3.15	3.14	10.5
166	RATORI GAL (BASTWA)	3.15	3.06	10.5
167	MATORI GAL (BAST WA)	3.15	3.08	10.5
168	CHIDWAI	3.15	2.72	10.2
169	NATHARAU	3.15	2.69	10.2
170	NATHAKAU	3.15	2.74	10.2
171	DERIYA	3.15	2.77	10.4
172	UCMITA	3.15	2.67	10.4
173	KERLI	3.15	2.85	10.5
174	KERLI	5	4.48	10.5
175	DEVANIYA	5	4.63	10.5
176	CHANALID	3.15	2.75	10.3
177	GILAKAUR	3.15	2.78	10.3
178		3.15	2.82	10.3
179	GODELAI	3.15	2.88	10.3
180	and a strength	3.15	2.68	10.3
181		3.15	2.75	10.2
182	RAMSAR	3.15	2.72	10.2
183	and and a second	3.15	2.82	10.2
184	BHOMSAGAR	3.15	2.88	10.5
185		3.15	2.83	10.5
186	SETRAWA	3.15	2.72	10.6
187	LALPURA	3.15	3.11	10.5
188	and all the	3.15	3.15	10.5
189	ASARLAI	3.15	2.67	10.5
190	Particula	3.15	2.74	10.5
191	GUMANPURA	3.15	2.93	10.5
192	CHEELA	3.15	2.70	10.2
193	without the second seco	3.15	2.67	10.2
194	RELA	3.15	2.77	10.2

Date: 03 08 2022

Signature: Name:____

Page 18 of MENDA) (A (M.L. BENDA) (A Superintending Engineer (PPM) Ju. V.V.N.L., JODInPUR (Authorized Representative)

Format A2 Page 17 of 37

.97

195	1	3.15	2.81	10.2
196		3.15	2.80	10.4
197	KANODIYA MAHASINGH	3.15	2.75	10.4
198		3.15	2.67	10.4
199	BUDKIYA	3.15	2.72	10.3
200		5	4.15	10.3
201	UNTHWALIYA	5	4.22	10.2
202		3.15	2.66	10.2
203	KHIYASARIYA	3.15	2.69	10.2
204	PABUSAGAR UNTHAWALIYA	3.15	2.80	10.2
205	PABOSAGAN ONTHAWADIA	3.15	3.03	10.5
205	BABA KI NIMBARI(DHEERPURA)	3.15	3.10	10.6
207		3.15	2.93	10.5
208	SEKHALA	3.15	3.00	10.5
209	KANODIYA PUROHITAN	3.15	2.82	10.2
210	BHALU KALLA	3.15	2.88	10.5
211	KHIRJAKHAS	3.15	3.01	10.5
212	SOMESAR	3.15	2.95	10.5
213	CHABA	3.15	2.91	10.5
214	SOINTRA	3.15	2.90	10.3
215	KHIRJA TIBNA	3.15		
	and the second s	the state of the second s	2.95	10.1
216	DEVRAJGARH	3.15	2.98	10.2
217	NOKHDADA BHATIYA	3.15	2.81	10.3
218		3.15	2.88	10.3
219	RAD KA BERA	5	4.54	10.4
220	CHHITERBERA	3.15	2.85	10.3
221		3.15	2.76	10.3
222	CHADI	3.15	2.83	10.4
223		3.15	2.93	10.4
224	KRISHAN NAGAR	3.15	3.02	10.2
225		3.15	3.05	10.2
226	RIDMALSAR	3.15	2.78	10.4
		3.15	2.71	10.4
228	MANASAR	3.15	2.70	10.5
230	BOONGADI	3.15	2.59	10.5
231	*		2.59	10.2
232	INDO KA BAS ·	3.15	the second se	10.2
233	IGNP PHALODI	3.15	2.62	10.2
-		3.15	2.27	10.8
234	(BAP) R.D.1120	3.15	3.01	10.2

Date: 03 08 2022

1:

Signature:

Pag(Ms.bc. GENDA) (Authorized Representative) Superintending Engineer (PPM) Ju. V.V.N.L., JODHP JR

Format A2 Page 18 of 37

236		3.15	2.82	10.2
237		3.15	2.75	10.5
238	SHEKHASAR	3.15	2.80	10.5
239		3.15	2.88	10.2
240	ANOP NAAGAR	3.15	2.85	10.2
241	RIN SALT	3.15	2.89	10.3
242		3.15	2.70	10.2
243	JHARASAR KALLA	3.15	2.62	10.2
244	Rampura(Raneri)	5	4.65	10.3
245		3.15	2.85	10.3
246	JETERI	3.15	2.85	10.3
247	and the second second	3.15	2.94	10.4
248	Poonasar	3.15	2.98	10.4
249		5	4.64	10.4
250		3.15	3.08	10.4
251	JAKHAN	3.15	2.96	10.4
252	152	3.15	3.15	10.4
253		3.15	2.92	10.2
254	BAPINI	3.15	2.90	10.2
255		3.15	2.81	10.2
256	PEOU	3.15	2.80	10.5
257	BEDU	3.15	2.95	10.5
258	DUOLACAR	3.15	2.62	10.2
259	DHOLASAR	3.15	2.78	10.2
260	PALINA	3.15	2.82	10.2
261	PALINA	3.15	3.02	10.2
262	SINGARSAR	3.15	2.75	10.3
263	SINGARAAN	- 3.15	2.67	10.3
264	BHAJAN NAGAR	3.15	2.80	10.5
265	BRAJAN NAGAN	3.15	2.71	10.5
266	ROOPANA JETANA	5.00	4.39	10.4
267		5.00	4.34	10.4
268	CHEELA	3.15	2.74	10.2
269	STREET.	5.00	4.42	10.2
270	KUSHLAYNADA	3.15	2.73	10.2
271		3.15	2.82	10.2
272	NAYABERA	3.15	2.95	10.5
273		3.15	3.04	10.5
274	KUSHLAWA	5.00	4,61	10.3
275	1001101011	3.15	2.91	10.3
276	BHOJAKOR	3.15	2.88	10.5
277		3.15	2.80	10.5

Date: 03 6 2022

dil

Signature: Name:

Page Plot StenDA) (Authorized Representative) Superintending Engineer (PPM) Ju. V.V.N.L., JOD/IPUR

0

Format A2 Page 19 of 37

	1	e	-
1	6	7	0
A.	E	7	۰.
- 7	-	-	-

278	LODINA	3.15	3.02	10.3
279	MORIYA	5	4.39	10.3
280	AMLA	5	4.70	10.4
281	DELANA	3.15	2.94	10.4
282	P.DHNI	5	4.83	10.5
283	J.NAGAR	5	4.90	10.5
284	DAYAKOR	5	4.70	10.2
285		3.15	2.80	10.5
286	Chainpura	3.15	2.69	10.5
287	and the	5	4.08	10.5
288	SHIVSAR	3.15	2,48	10.5
289	BAORI KALLA	5	4.46	10.2
290		3.15	2.98	10.2
291	RAYADA	3.15	3.01	10.2
292	MARIAT	3.15	2.77	10.2
293		. 3.15	2.83	10.2
294	JALODA	3.15	2.88	10.2
295		3.15	2.89	10.2
296	MANDLA KHURD	3.15	2.98	10.2
297	KHARA	3.15	2.98	10.2
298		3.15	2.89	10.2
299	KOLU PABUJI	3.15	2.96	10.2
300	DENCTI VUUDD	3.15	2.89	10.2
301	BENGTI KHURD	5	4.56	10.2
302	CILIDA	3.15	2.91	10.2
303	SIHRA	5	4.61	10.2
304	MANIDI A PALLAN	3.15	2.95	10.2
305	MANDLA KALLAN	5	4.71	10.2
306	EKA BHATIYA	3.15	2.91	10.2
307	IENALA	5	4.54	10.3
308	JEMALA	3.15	2.85	10.3
309	GAJJA	3.15	2.94	10.5
310	GAUA	. 3.15	3.01	10.5
311	BARSANADA	3.15	2.94	10.5
312	DAD BRITISH	3.15	3.00	10.5
313	KAPADISAR	3.15	2.67	10.5
314		3.15	2.70	10.5
315	SADAWATA	3.15	2.78	10.5
316	Goyali Road	5	4.12	10.58
317	Goyan Noau	3.15	3.00	10.58
318	Sirohi City	5	4.74	10.52

Date: 03 08 2022

dih

Signature:_

(M.L. BENDA) Name:_____ Superintending140 groot PPM(Authorized Representative) Ju. V.V.N.L., JGLINPUR

Format A2 Page 20 of 37

319	Sindrath	3.15	2.74	10.41
320		5	4.00	10
321	Jawal	3.15	2.78	10
322	Padiv .	3.15	2.50 -	10
323	Varada .	3.15	2.70	10
324		5	4.34	10
325	SheoganjRiico	3.15	2.78	10
326		3.15	2.56	10
327	Posaliya	3.15	2.45	10
328		3.15	2.54	10
329		3.15	2.45	10
330	Jogapura	3.15	2.58	10
331	Badgaon	3.15	2.45	10
332		3.15	2.70	10
333	Palari	3.15	2.78	10
334		3.15	2.60	10
335	Ander	3.15	2.80	10
336	Andor	3.15	2.45	10
337	Kallach Name	3.15	2.50	10
338	Kailash Nagar	3.15	2.80	10
339	Sawali .	3.15	2.50	10
340	Jhadoli Veer	3.15	2.60	10
341	Ball of the State	3.15	2.80	10
342	Kalandari	3.15	2.23	10
343	Weldhammed	3.15	2.56	10
344	Krishnaganj	3.15	2.70	10
345	Marthandrow	3.15	2.50	10
346	MerMandwara	3.15	2.40	10
347	Tanwari	3,15	2.23	10
348	Current	3.15	2.39	10
349	Swaroopganj	3.15	2,45	10
350	Nitora	3.15	2.48	10
351	MILLOTA	3.15	2.78	10
352	Rohida	3.15	2.60	10
353	NUTION I	3.15	2.30	10
354	Bhujela	3.15	2.20	10
355	outlette	3.15	2.70	10
356		3.15	2.50	10
357	Sirohi Road	3.15	2.60	10
358		5	4.65	10
359	Pindwara City	5	4.34	10

Date: 03 08 2022

9

Signature: Name:

(M.L. BENDA) Name: Superintending EPhyseer (PPM) (Authorized Representative) Ju. V.V.N.L., JGCHPUR

1.0	(FIE	121	A4	
10.		54	of 37	ŧ.
r.	nge -	48	101.51	ŗ.

5

60]	Banas	5	4.60	10
61	Veerwada	3.15	2.38	10
362	Nadiya	3.15	2.80	10
363	Gandhi Nagar	10	6.20	9.78
364	IOCL	5	3.20	9.7
365	AmbajiIndAr	10	7.80	9.7
366	Khara	10	7.38	9.7
367	Manpur	10	3.87	9.7
368	Deldar	3.15	2.25	9.7
	Karoli	3.15	2.34	9.7
369 370	Karon	3.15	2.40	9.7
	Moogthala	3.15	5.40	9.7
371 372	Girwar	3.15	2.43	9.7
372	Mawal	3.15	1.98	9.7
374	Widwar	5	3.50	9.7
375	Mt. Abu	5	3.40	9.7
375		3.15	2.70	10
377	Reodar	3.15	2.40	10
378	Jolpur	3.15	2.50	10
379	Selwada	3.15	2.15	10
380	2014000	3.15	2.78	10
381	Dabani	3.15	2.56	10
382	Makawal	3.15	2.60	10
383	Sirodi	3.15	2.30	10
384	511040	3.15	2.40	10
385	Anadara	3.15	2.30	10
386	Dantarai .	3.15	2.60	10
387	÷.,	3.15	2.40	10
388	Varman	3.15	2.42	10.2
389		3.15	2.90	10.2
390	- Mandar	3.15	2.88	10.2
391		3.15	2.35	10.2
392		3.15	2.50	9.8
393	- lethawada	5	4.50	9.8
394		3.15	2.45	9.8
395	Morwada	3.15	2.70	9.8
396	Babus	3.15	2.60	9.8
397	Rahua	3.15	2.70	9.8
398	Nimbaj	3.15	2.76	9.8
399) Millioa)	5	4.88	9.8
400) Raipur	3.15	2.70	9.8

Date: 03 06 2022

GA Signature:______ P(M 1 BENDA) Name:______ Superintending Engineer (PPM) Authorized Representative) Ju. V.V.N.L., JODHPUR

Form	àt.	12
Page	22	of 37

(101

101	Mandunda	3.15	2.55	9.8
402	Magriwada	3.15	2.86	9.8
103	CurraieneBada	3.15	2.67	9.8
104	GusaisarBada	3.15	2.78	9.8
105	Manhauna	3.15	2.97	9.8
406	Mankrasar	3.15	3.00	9.8
107	Binjasar 1st	3.15	2.37	9.8
108	Richard Bad	3.15	2.27	9.8
109	Binjasar 2nd	3.15	2.47	9.8
10		3.15	2.40	10
411	Benisar	3.15	2.78	10
112	Duran d	3.15	2.86	10
\$13	Dusama-1	3.15	2.80	10
414	Internet	5	4.00	10
415	Jetasar	3.15	2.70	10
416	THUKRIYASAR-1 ,	3.15	2.61	9.9
417	THUKRIYASAR-II	3.15	2.80	10
418	Jai salSar	3.15	2.33	10
419	Gopalsar - I	3.15	2.71	9.9
420	oopaisar - i	3.15	2.66	9.9
421	SATTSAR	3.15	2.62	10
422	antiann	3.15	2.38	10
423	DHEERDESAR PURIHITAN	3.15	2.58	10.1
424	LIKHMADESAR-1	5	3.57	10.1
425	CIRCIMINAL SHIP 1	3.15	2.69	10.1
425	LIKHMADESAR-III	3.15	2.78	10
427	UNTINAL/LOAN-III	3.15	2.42	10
428		3.15	2.52	10
429	AADSAR	3.15	2.60	10
430	141	3.15	2.40	10
431	UDRASAR	3.15	2.85	10
432	LALASAR	3.15	2.71	10
433	SARNA JOHAD	3.15	2.87	10
434	Ramdevra	3.15	2.47	10
435	hamberto	3.15	2.60	10
436	- Seruna 1	5	2.70	10
437	and other a	5	4.20	10
438	Seruna 2	5	4.10	10
439	Service 2	3.15	2.40	10
440	Derajsar - I	5	4.23	10
441	meralsar - i	3.15	2.55	10
442	Gopalsar-II	3.15	2,54	10

Date: 03 08 2022

Signature:

Name:

Superintending Englisher (PPM) (Authorized Representative) Ju. V.V.N.L., JCDHHUR

Format A2 Page 23 of 37	
	(10)

443		3.15	2.19	10
444	Gogana	3.15	2.47	10
445	Sarunda	3.15	2.40	10
446		5	4.36	10
447	Siniyala - I	3.15	2.50	10
448	Hanuman Nagar	3.15	2.40	10
449	Shadla	3.15	2.13	10
450	Nathusar	3.15	2.35	10
451		3.15	2.39	10
452	Saisar	3.15	2.49	10
453		3.15	2.40	10
454	Ratriyaphanta	3.15	2.80	10
455	LalasarSathri	5	4.23	10
456	Bhedkitalai	3.15	2.32	10
457	Mainsar	5	4.24	10
458	No. Martin	5	4.45	10
459	Jhareli -I	3.15	2.40	10
460		3.15	2.30	10
461	Gundusar '	5	4.30	10
462		3.15	2.60	10
463	Udsar	5	2.40	10
464	Jhareli-li .	3.15	2.85	10
465	Shiv Mandir	3.15	2.19	10
466	Bhagwatikund	3.15	2.70	10
467	AMBASAR	5	4.00	10
468		3.15	2.50	10
469	SUJASAR	3.15	2.67	10
470	GIGASAR	3.15	2.60	10
471	1. SURDHNA-I	5	2.56	10
472	2 50000000 0	3.15	2.58	10
473	2. SURDHNA -II	3.15	2.85	10
474	A KOMYAN N	3.15	2.80	10
475	1. K.D JATAN -II	3.15	2.66	10
476	1. 1404545	3.15	2.70	10
477	1. NAPASAR	3.15	2.47	10
478	Constanting	5	4.27	10
479	Gunsaisar-I	3.15	2.19	10
480	Neuropadatas	5	4.36	10
481	Naurangdesar	3.15	2.76	10
482	NAPASAR - II .	3.15	2.44	10
483	0.044540.1	. 5	4.35	10
484	2. RAMSAR -I	5	4.48	10

Date: 03 08 2022

2:

Superintending Connect (PPM) (Authorized Representative) Ju. V.V.N.L., JODHPUR

107

185	3.044640.0	3.15	2.67	10
186	3. RAMSAR-II	3.15	2.50	10
487	1.K.D.Boran-I	3.15	2.43	10
488	2.K.D. Jatan -I	5	4.54	10
489	1. K.D.Jatan-IV	3.15	2.51	10
490	2. KILCHU	5	3.80	10
491		5	3.89	10
492	1. TEJRASAR - I	3.15	2.44	10
493	2. TEJRASAR - III	5	4.57	10
494	4. BELASAR	5	3.42	10
495	2. TEJRASAR - II	5	4.57	10
496		5	4.50	10
497	Ranisar	3.15	2.52	10
498	C	5	4.56	10
499	Serera	5	4.45	10
500	Delese	3.15	2.19	10
501	Rajera	3.15	2.57	10
502	BushaBada Bara	5	4.50	10
503	RuniyaBada Bass	5	3.94	10
504	haddeness	5	4.40	10
505	katriyasar	5	4.49	10
506	2. SINTHAL	3.15	2.57	10
507	1.0.446404	5	4.38	10
508	L D MAGARA	3.15	2.57	10
509	JD MEGRA	5	3.80	10
510	MECHAPAN	5	3.90	10
511	MEGHASAR	5	4.23	10
512	BADCINCUEAD	5	4.49	10
513	BARSINGHSAR	5	4.34	10
514	SWAROOPDESAR	3.15	2.23	10
515	BHANEKA	3.15	2.49	10
516	DRANENA	3,15	2.45	10
517	PANEDI	5	4.44	10
518	RANERI	5	4.28	10
519	HADDA	3.15	2.28	10
520	LOHIYA	5	3.81	10
521	KHINDASAR	5	4.00	10
522	BHELU	5	4.57	10
523	SERPURA	3.15	3.71	10
524	KISHANASAR	3.15	2.73	10
525	NANANANA	3.15	2.46	10
526	DANTOR	3.15	2.67	10

Date: 03 08 2022

Signature:_

Superintending Engineer (PPM) (Authorized Representative) Ju. V.V.N.L. JODHPUR

Format A2 Page 25 of	
Page 25 of	37
1	(10

527	28 KJD -	3.15	2.48	10
528	3 PWM	3.15	2.29	10
529	1 ADM	3.15	2.67	10
530	RANJEETPURA	3.15	3.05	10
531		3.15	2.86	10
532	RD 25	5	4.28	10
533	GHADIYALA	5	4.40	10
534		3.15	2.36	10
535	Jamsar	3.15	2.30	10
536		3.15	2.45	10
537	1. GADHWALA - I	5	4.00	10
538		5	3.81	10
539	2 GADHWALA - II	3.15	2.50	10
540	Pugal	3.15	2.48	10
541	RD 710	3.15	2.48	10
542	RD 750	3.15	2.29 -	10
543	BADERAN	3.15	2.50	10
544		3.15	2.34	10
545	JETPUR	- 3.15	2.19	10
546	ARJUNSAR	3.15	2.45	10
547	Lalera	3.15	2.35	10
548	Mahajan	3.15	1.71	10
549	part and a start of the start of the	5	4.45	10
550		5	4.34	10
551	JAWAHARNAGAR	5	4.30	10
552		5	4.30	10.5
553		8	6.30	10.5
554	MAUSAM VIBHAG	5	4.20	10.5
555	MAHALAXMI ENCLAV	5	4.45	10.5
556	AGRAWAL COLONY	5	3.42	10.5
557	2 MI NATHAWAN	5	2.88	10.5
558	2 ML NATHAWALI	3.15	2.30	10.5
559		3.15	2.40	10.5
560	RIICO-I	8	5.89	10.5
561	NICO'I S	5	4.17	10.5
562	a state and the	5	4.30	10.5
563	RIICO-II	8	6.70	10.5
564	MICOM	5	4.38	10.5
565	SHANI MANDIR	5	4.44	10.5
566	SCHOLINATION	5	4.34	10.5
567	SABJI MANDI	10	8.78	10.5
568	SHOT MALED	5	3.80	10.5

Date: 03 08 2022

Gil______Signature:______ Pa(M1 or RENDA) Name:______ Superintending Engineer (PPM) Authorized Representative) Ju. V.V.N.L., JODHPUR

Fu	ra	tüt.	A2	
Pa	ge	26	of 37	ĺ

105

569	KUNJ VIHAR	3.15	3.00	10.5
570	100	10	7.80	10.5
571	JCT	5	4.30	10.5
572	3 PULI	10	8.00	10.5
573	NUMBER CONCURSION	8	6.60	10.5
574	BHAGAT SINGH CHOCK	8	6.50	10.5
575		5	4.13	10.5
576	KUMS ·	5	3.89	10.5
577		5	3.90	10.5
578	HOSPITAL	5	4.67	10.5
579		5	4.56	10.5
580	SADBHAWANA NAGAR	5	4.35	10.5
581	V.K. CITY	5	4.48	10.5
582	8115	5	4.45	10.5
583	PHG	S	4.00	10.5
584	kaliyan	3.15	2.80	10.5
585	khatlabana	3.15	2.90	10.8
586	dulapurkeri	3.15	2.03	10.6
587	hindumalkot	3.15	2.46	10.7
588	sadhuwali .	3.15	2.60	10.9
589	7A .	3.15	2.60	10.8
590	BURJAWALI	3.15	1.90	10.6
591	CHUNAWAD	3.15	1.40	10.7
592	15Z ·	3.15	2.20	10.9
593	HOMELAND	5	3.40	10.8
594	RISHI SIDHI	5	3.70	10.8
595	NETTING A	3.15	2.40	10.7
596	NETEWALA	3.15	2.80	10.7
597	7 ML	3.15	2.60	10.9
598	7 ML	3.15	2.50	10.9
599	25 ML	3.15	2.80	10.5
600	DHINGAWALI	3.15	2.10	10.7
601	JODHEWALA	3.15	1.20	10.9
602	SADULSAHAR	2.5	1.60	10.5
603	RIICO	5	4.11	10.8
604	4 KRW	3.15	2,74	10.3
605	PARTAP PURA	3.15	2.22	10.5
606	BUDHRWALI	3.15	1.37	10.5
607	PATALI	3.15	2.05	10.3
608	MANNIWALI	3.15	1.37	10.3
609	IPDS KESRISINGHPUR	5	3.10	10.3
610	V HEAD .	3.15	2.60	10.3

Date: 03 08 202 2

Signature: P(M 1s aPENDA) Superint anding Engineer (PPM) Ju. V.V.N.L., JUDHPUR

Format A2 Page 27 of 37		-	_	-	
	7	1	D	6	
	~	-	-	-	

611	DHNOOR	3.15	1.90	10.3
612	DALPATSINGHPUR	3.15	1.40	10.3
613	KAMINPURA	3.15	2.20	10.3
614	ARAYAN	3.15	2.40	10.3
615	MALKANA	3.15	2.40	10.3
616	MIRJEWALA	5	3.85	10.3
617	18F	3.15	1.20	10.3
618	KONI	3.15	2.80	10.3
619	DAULATPURA	3.15	2.10	10.3
620	MANFOOLSINGHWALA	5	4.50	10.3
621	GANESHGARH	3.15	1.24	10.3
622	GANESHGARH	3.15	2.60	10.3
623	LALGARH	3.15	2.40	10.3
624	PANNIWALI	3.15	2.20	10.3
625	BANWALI	3.15	2.40	10.3
626	MAMMAR	3.15	2.49	10.3
627	KHARACHAK	3.15	2.02	10.3
628	5 LNP	3.15	2.30	10.3
629	SAMEIA	3.15	2.24	10.3
630	BAJUWALA	3.15	2.71	10.3
631	SATJANDA	3.15	2.52	10.3
632	DABLA	3.15	2.61	10.3
633	MUKLAWA	3.15	2.43	10.3
634	LOONEWALA	3.15	1.49	10.3
635	16PS	3.15	1.12	10.3
636	UDSAR .	3.15	2.33	10.3
637	BHOMPURA	3.15	1.40	10.3
638	BROMPORA	8	7.72	10.3
639	RAISINGHNAGAR	3.15	2.70	10.3
640	BADA MANDIR	5	4.24	10.3
641	RIICO	5	4.21	10.3
642	PADAMPUR	5	4.00	10.3
643	24 88	5	3.00	10.3
644	4))	3.15	2.50	10.3
645	4 DD	3.15	2.30	10.3
646	CHANNADHAM	3.15	2.70	10.3
647	CC HEAD	3.15	2.00	10.3
648	3 RB	3.15	2.20	10.3
649		3.15	2.30	10.3
650	PSHEAD	3.15	2.50	10.3
651	JIVANDESAR	3.15	2.10	10.3
652	69 LNP	3.15	2.30	10.3

Date: 03 05 2022

Signature:_____ Name:_____

(Authorized Representative)

(WEL298ENDA) Superintending Engineer (PPM) Ju. V.V.N.L., JODHPUR

F	bra	uit.	A2
			of 37

183

653		3.15	2.90	10.3
654	BINJHBAYLA -	3.15	2.50	10.3
655	GHAMURWALI	3.15	2.19	10.3
656	SAWANTSAR	3.15	2.10	10.3
657	MANJHUWASS	3.15	2.30	10.3
658	SKPR	5	4.10	10.3
659		3.15	2.90	10.3
660	39H	3.15	2.80	10.3
661	2FC	3.15	2.75	10.3
662	52GG	3.15	2.95	10.3
663	48GG	3.15	2.90	10.3
664	42F	3.15	2.70	10.3
665	5"0"	3.15	2.70	10.3
666		5	3.50	10.3
667	GAUSINGHPUR	5	4.60	10.3
668	SANGRANA	3.15	1.90	10.3
669	BALARAJPURA	3.15	2.28	10.3
670	JORAWAR ·	3.15	2.00	10.3
671	CCBF '	3.15	2.70	10.3
672		3.15	2.57	10.3
673	PALIWALA	3.15	2.63	10.3
674	SARDARPURA BIKA	3.15	2.03	10.3
675	NIRWANA	3.15	2.46	10.3
676	DHABA	3.15	2.54	10.3
677	GURUSAR MODIA	3.15	2.46	10.3
678		5	4.49	10.3
679	BDOPAL ROAD GSS	5	4.34	10.3
680	NUCO CCC	5	4.67	10.3
681	RIICO GSS	5	4.52	10.3
682	PHED GSS	5	4.60	10.3
683	STADIUM GROUND GSS	5	3.33	10.3
684	CONTACAD	5	4.42	10.3
685	SOMASAR	5	3.98	10.3
686	KALUSAR	3.15	2,50	10.3
687	THETHAR .	3.15	2.44	10.3
688	RAIYAWALI	3.15	2.67	10.3
689	UDAIPUR	3.15	2.70	10.3
690	BIRMANA	3.15	2.60	10.3
691	2 GPN	3.15	2.62	10.3
692	19.600 RDR	3.15	2.50	10.3
693	RAJIASAR	3.15	2.38	10.3
694	In the second	3.15	2.58	10.3

Date: 03/08/2022

4.6

Signature

Nanie:

(Authorized Representative)

Pres 20 obten DA) (Superir tensing Disgraphy (PPI) 10. V.V.N.L., JODHPUR

•

Format Page 29		1
1	0	108

595	DEEDWANA	3.15	2.40	10.3
595	BACHHRAR	3.15	2.22	10.3
597		3.15	2.40	10.3
598	BHOJUSAR	3.15	2.30	10.3
599		3.15	2.30	10.3
700	GOVINDSAR	3.15	2.35	10.3
701	RAGHUNATHPURA ·	3.15	2.15	10.3
702	SILWANI	3.15	2.50	10.3
703	the second second second	5	4.17	10.3
704	SRI VIJAYNAGAR	5	4.11	10.3
705	29 GB	. 5	3.80	10.3
706	44 GB	3.15	4.30	10.3
707	KUPLI	3.15	1.30	10.3
708	PURANA BIJLI BOARD	5	4.10	10.3
709		5	4.45	10.3
710	2 DAM	3.15	2.13	10.3
711	Concernent of the second	5	4.43	10.3
712	ANOOPGARH	3.15	2.50	10.5
713	2000	5	4.34	10,5
714	RIICO	3.15	2.65	10.5
715	PREM NAGAR	5	4.45	10.5
716	76GB	3.15	2.50	10.7
717	BANDA COLONY	3.15	2.60	10.7
718	10A .	3.15	2.65	10.7
719		3.15	2.45	10.7
720	27A	3.15	2.50	10.7
721	61GB	3.15	2.50	10.9
722	RAMSINGHPUR	3.15	2.50	10.9
723	NHARAWALI	3.15	2.58	10.9
724		3.15	2.50	10.5
725	RAWLA MANDI	3.15	2.45	10.5
726	3 KD	3.15	1.45	10.5
727	7 KND	3.15	2.03	10.5
728	365 HED	3.15	2,46	10.5
729	NEW MANDI CUARCANA	3.15	2.40	10.5
730	NEW MANDI GHARSANA	3.15	2.60	10.5
731	OLD MANDI GHARSANA	3.15	2.40	10.5
732	6 DD	3.15	2.15	10.5
733	PATRODA	3.15	2.45	10.5
734	281 HEAD	3.15	2.35	10.5
735	JALWAU	3.15	1.98	10.5
736	ROJARY .	3.15	2.95	10.5

Date: 03 08 202.2

Signature:

(M.L. BENDA) Name: Superintering EAGneer (PPM) (Authorized Representative) Ju. V.V.N.L., JODHPUR

di

For	nia	ŧ)	12
Pas	. 1	۵.	of 37

109

37	4 STR	3.15	2.82	10.5
738	CHAWA	3.15	2.72	10.2
739	KAWAS	3.15	2.83	10.4
740	BACHHADAU	3.15	2.74	10.1
741	BOOTH	3.15	2.18	10.5
742	KAGAU	3.15	2.39	10.5
743		3.15	2.40	10
744	LEELSAR	3.15	2.60	10
745	MARUDI	3.15	2.94	10.3
745	NIMBARI	3.15	2.98	10.6
747	SANAWARA	3.15	2.45	10.3
748	HATHMA	3.15	2.12	10.2
49	RAMSAR	3.15	2.01	10.3
750	CIDAD	. 3.15	2.40	9.6
751	GIRAB	3.15	2.65	9.6
752	HARSANI	3.15	2.82	10.5
753		3.15	2.45	9.8
754	BATADOO	3.15	2.80	9.8
755	Sectore 1	3.15	2.50	9.8
756	BHIMADA	3.15	2.45	9.5
757	KHANJI KA TALLA	3.15	2.75	10.5
758		3.15	2.39	10.1
759	JETANIYON KI DHANI	3.15	2.50	10.1
760		5	2.45	10.2
761	BHADAKHA	5	2.30	10.2
762	HADWA HADVECHA	3.15	2.50	10.5
763	CAUTION .	5	2.70	10.2
764	SAJITARA	5	2.67	10,2
765	BUILTAND	3.15	2.34	9.8
766	BHIYAND	3.15	2,45	9.8
767	CHOCHEA	3.15	2.89	10.2
768	CHOCHRA	3.15	2.45	10.2
769	DHEER JI KI DHANI	3.15	2.65	9.8
770	KANASAR	3.15	2.70	10.2
771	APRILIA PAR	3.15	3.90	10.2
772	мокнав	5	4.45	10.1
773	in on the	5	4.60	10.1
774	PRAHLADPURA	3.15	2.81	10.3
775	SADRAM KI BERI	3.15	2.40	10.2
776	SHOTHIN NEW PERI	3.15	2.56	10.2
777	ALAMSAR	3.15	2.60	9.9
778	ALAMAAN	3.15	2.90	9.9

Date: 03 08 2022

Signature:

(M L BENDA) Name: Pres 37 of 39 Superintending Engineer (PPM) Ju. V.V.N.L., JOOH: UR

Fera Page	nat A2 31 of 37	1
1	(10

79	BURAR	3.15	2.56	10.2
80	BURAN KI TALLA	5	4.05	10.3
81		3.15	2.95	10.5
82	ITADA	3.15	2.65	10.5
83	NETRAD	3.15	2.81	10.7
184		3.15	2.10	10.2
785	SARUPE KI TALLA	3.15	3.00	10.2
786	SRI RAM WALA	3.15	2.73	10
787		3.15	2.56	10.5
788	TALSAR	3.15	2.21	10.5
789	ASOTRA	3.15	2.85	10.3
790	BITHUJA	3.15	2.88	10.1
791	BRAHMAJI KA MANDIR	3.15	2.54	10.1
792		3.15	2.70	10.4
793	BUDIWARA	3.15	2.45	10.4
794		3.15	2.56	10.2
795	JAGSA	3.15	2.45	10.2
796		3.15	2.68	10.7
797	JASOL .	3.15	2.70	10.7
798	KANANA	. 3.15	2.88	10.3
799	KITHNOD	3.15	2.92	10.4
800		3.15	3.00	10.4
801	PADROO-FANTA	3.15	2.00	10.4
802	SARANA	3.15	2.98	10.3
803	KALYANPUR	3.15	2.77	10.4
804	NAGANA	3.15	2.51	10.2
805	DACUDADOA	3.15	2.56	10.2
806	PACHPADRA	3.15	2.67	9.8
807	PATODI	3.15	2.78	10.4
808	THOMBU	3.15	2.71	10.5
809	KANOD	3.15	2.59	10.3
810	RATEU	3.15	2.98	10.4
811	INTED	3.15	2.16	10.4
812	BHAGWA	3.15	3.00	10
813	DIAGWA	3.15	2.01	10
814	DHEERA	3.15	2.41	10.2
815	GUDANAAL '	3.15	2.74	10.2
816	GUNGROT	5	4.23	10.5
817	INDRANA	3.15	2.92	10.5
818	KATHADI	3.15	2.45	10.5
819	ATTAVI	3.15	2.67	10.5
820	KERLI NADI	3.15	2.46	10.2

Date: 03/08/2022_

Signature:

(M.L. BENDA) Name: SuperintEfform CEH2 neer (PPM) (Authorized Representative) Ju. V.V.N.L., JCDHPUR

Format A2 Page 32 of 37

MI

821	MELI	3.15	2.71	10.2
822	MOKALSAR	5	4.52	10.1
823	MUTHALI	3.15	2.89	10.3
824	AJEET	3.15	2.91	10.2
825	KARMAWAS	3.15	2.66	10
826	RAKHI	3.15	2.91	10.3
827		3.15	2.75	10.2
828	SAMDARI	3.15	2.56	10.2
829	SILORE	3.15	2.74	10.3
830		3.15	2.69	10.4
831	DHARANA	3.15	2.29	10.4
832		3.15	2.26	10.4
833	ITAWAYA-FANTA	3.15	2.88	10.4
834		3.15	2.87	10.2
835	KHANKHI	3.15	2.56	10.2
836		3.15	2.53	10.4
837	KUNDAL	3.15	2.40	10.4
838		3.15	2.90	10.5
839	MITHORA	3.15	2.06	10.5
840	RELO KI DHANI	3.15	2.77	10
841	SAILA	3.15	2.62	10.2
842		3.15	2.67	9.78
843	SINER	3.15	2.61	9.78
844	VAV NAGAR	3.15	2.68	10
845	ADEL ·	3.15	2.82	10.2
846		3.15	2.43	10.1
847	BHATTA	3.15	2.79	10.1
848	CHADON KI DHANI	3.15	2.91	10.3
849	CHAUDHARIYON KI DHANI	3.15	2.61	10.5
850	DHANWA-FANTA	3.15	7.63	10.5
851	DHUDIA MOTI S	5	4.24	10
852		3.15	2.23	10.4
853	1.М.К.	3.15	2.25	10.4
854	SARNU-PANJI	3.15	2.83	10
855	BHATALA	3.15	2.86	10.3
856	BADON-KA-TALA	3.15	2.73	10.2
857	BAMNOR	5	4.23	10.1
858	BAMRLA	5	4.62	10.5
859	BHAG BHERE KI BER!	3.15	2.30	10.4
860		3.15	2.52	1.3
861	BISARNIYA	3.15	2.00	10.3
852	DHUDHU	3.15	3.00	9.9

Date: 03 08 2022

Signature:_

(M.L. BENDA) Name: Superint Prof. Holmaneer (PPM) (Authorized Representative) Ju. V.V.N.L., JODHPUR

Format A2	
Page 33 of 37	

TIP

863	Service States	3.15	2.23	9.9
864	PERAD	3.15	2.28	9.8
865	KEKAR	3.15	3.00	9.8
866	KITHNORIYA	3.15	2.94	10.4
867	KOJA	3.15	2.85	10.5
863	LUKHU	3.15	2.65	10.5
869	RELO KI BERI	3.15	2.80	9.6
870	ROHILA (EAST)	3.15	2.82	10.2
871	SACHI KI BERI	3.15	2.81	10.5
872	-	3.15	2.65	10.2
873	SAUAN KI BERI	3.15	2.35	10.2
874	BORCHARNAN	3.15	2.78	10
875	0.000	3.15	2.78	9.4
876	BHEDANA	3.15	2.45	9.4
877	GADEVI	3.15	2.83	10.2
878	LUNWA- CHARNAN	3.15	2.98	10.2
879	NAGAR	3.15	2.72	10.1
880	PANEL KI BERI	3.15	2,98	10.2
881	RAM JI GOAL	3.15	2.89	10.2
882	SALLU KI BERI	3.15	2.95	9.7
883	CINIDUACINA CH	3.15	2.13	10.2
884	SINDHASWA-CH.	3.15	2.88	10.2
885	AND ANING REPERT	3.15	2.05	10.2
886	ANDANIYO KI BERI	3.15	3.00	10.2
887	JALI KHERA	3.15	2.96	10
888	MALPURA	3.15	2.68	10.3
889	NOVUADA	3.15	2.23	10.5
890	NOKHARA	3.15	2.20	10.5
891	AKAL	3.15	2.91	9.5
892	GANGASARA	3.15	2.90	10.5
893	GORA	3.15	2.81	9.8
894	GULE KI BERI	. 3.15	2.67	10.5
895	SOBHALA-DARSHAN	3.15	2.78	10.5
896	SONARI	5	4.50	10.3
897	BHANWAR	3.15	2.00	10.5
898	DIMINIAN	3.15	3.00	10.5
899	BISASAR	3.15	2.69	10.5
900	DHURAWA	3.15	2.50	10.1
901	UNUKAWA	3.15	2.52	10.1
902	FACALINA	3.15	2.78	10.5
903	FAGALIYA	3.15	2.28	10.5
904	HARPALIYA	3.15	2.56	10

+Date:

(M.L. BENDA) Signature: (M.L. BENDA) Name: Superintersing EHP near (PPM) (Authorized Representative) Ju. V.V.N.L., JODHPUR

		Sec. 16.		37	
--	--	----------	--	----	--

905	IANIDALINA	3.15	2.63	10.5
905	JANPALIYA	3.15	2.60	9.9
907	MAN JI KA TALLA	3.15	2.06	9.9
908	SALARIYA	- 5	3.89	10.5
909	CARLA	3.15	2.94	10.1
910	SARLA	3.15	2.57	10.5
911	SEDWA	5	4.10	10.5

As a constituent of NER grid, it is required to operate the power system as per IEGC Code and all equipment as specified by CEA Technical Standards Regulation (2010).

In order to increase the power factor (near to unity) and hence resulting in low losses, efficient system and better voltage profile, introduction of reactive (capacitors) component (kVAR) are the cheapest and simplest means of power compensation. Hence, the objective of the project is to give better power supply with better voltage regulation to the consumers in the Jodhpur DISCOM region.

The problem / constraint would be addressed through the project / scheme / activity:

- Introduction of Automatic Switched Capacitor Banks.
- Precise and real time compensation of reactive power.
- Establishment of reliable Reactive Power in System.
- Improvement in line losses.
- · Existing infrastructure can accommodate more consumers.
- Less loading of transformers.
- Better utilization of Capacitors.

Training System: The Training System is an offline environment used for training users in the operation of the system. On-site training of equipment to users for operation of equipment's.

Execution and implementation

While finalizing technical specifications of the system, care has been taken to realize 100% success and sustainability. Considering 24, x 7, 365 days working of system, system will be procured with 5 Years support scheme is withonfine monitoring facility, in case of failure of field equipment control station raise alarm. It will be helpful to take corrective action in time. Only authorized users will be permitted to change operating limits and other features of software. Also, one-year warranty

Date: 03 08 2022

Signature: Name:

Superintending Engineer (PPM) (Authorized Representative) Ju. V.V.N.L., JODHI-UR for all hardware is ensured and there is a comprehensive AMC with executing agency for 5 years after 1-year warranty excluding communication link for reliable operation of scheme.

Format A2 Page 35 of 37

2.5 Executing Agency

JDVVNL shall be the executing autimity. Presently, JdVVNL owns and operate more than 2335 Power Stations of voltage level 33kv. It may be noted that JdVVNL has introduced SAS/SCADA and substation projects in past. Being the statedistribution utility, JdVVNL has had vast experiences in executing dozens of such projects in energy sector under the fund made available by REC/PFCor through other government grants. Further, it is worth mentioning that JdVVNL has a track- record of maintaining the time-schedule for completion of its various projects with its strong engineering and commissioning staff.

2.6 Time line for Implementation of Project /Scheme/Activity

Time line of the Project / Scheme /	Activity
Likely Duration of Project (in months)	24(Twenty-Four) months
Likely Start Date	On accord of Administrative & Financial Approval
Likely Completion Date	July 2025

Date: 03 00 2022

(M.L. BENDA) Name: SuperinRegel#1gel40incer (PPM) (Authorized Representative) Ju. V.V.N.L., JODHPUR

Signature:

Timeline of Activities

SI	-	Year	2022-23	3	2023-2024	024	1			2024-2025
No.	Description	Month	QTR3	QTR4	QTR1	QTR2	QTR3		QTR4	QTR4 QTR1
-	Project Approval									
2	Bid Preparation									
m	Bidding Period		1.3					-		
4	Evaluation, Contract Award and Mobilization	u u			:					
n	1 st Disbursement	-								
9	Project Status Report								1	
4	2 rd Disbursement		10.2							
96	Project Status Report		i de la					and the second		
ate: 0	Date: 03 08 2022	Signatu Name: (Auth	Signature: Name: (Authorized Representative)	Renese	rtative)		N	AND AND		

Format A2 Page 36 of 37 TIS

E. Format A2 Page 37 of 37 2 (M.L. BENDA) Superintending Engineer (PPM) Ju, V.V.N.L., JOCHPUR 10 (Authorized Representative) C 4. Signature: Name: • Page 39 of 140 0 Project Status Report Project Status Report 3rd Disbursement 4th Disbursement Date: 03 .8 2022 = 10 12 6

Summary of Detailed Project Report (DPR)

The revised DPR is prepared for installation of reactive power solution on 33/11 kV substations in Jodhpur DISCOM with the ratings as per CEA's Regulations.

Copy of DPR attached - Yes Summary of DPR given - Yes

Implementation Schedule / Milestones

Target for Physical Milestones

Particulars (No. of)	Total	Quarter 1 of 2023- 24& Quarter 4 of 2023-24	Quarter 2&4 of 2023-24	Quarter 2 of 2024-25
MV APFC Panels		Completion of Supply	Erection	Testing & Commissioning

Target for Financial Milestones

(in Crores)

Description of Amount Required	Total	Quarter 1 of 2023-24	Quarter 2 of 2023-24	Quarter 4 of 2023-24& Quarter 1 2024-25 out of which 10% through internal sources.	Quarter 1 of 2024-25
Supply and erection of materials and equipment covered under the scheme	296.85	10% of total project cost i.e. 29.69	20% of total project cost i.e.59,37	60 % of total project cost i.e. 178.11.21 (148.42 from PSDF & 29.69 from internal sources)	10% of total project cost i.e. 29.69

(M.L. BENDA) Superintending Engineers Ju. VV.612......

Date: 03 08 2022

Signature: Name:

Page 40 of 140

(Authorized Representative)

18

Format A4 Page 1 of 9

Financial Implication of the Scheme

1. Summary

SL No.	Item	Amount (Rs. 296.85in Crore)
1.	Total Cost Estimate	296.85Cr.
2.	Funding Proposed from PSDF	90%
3.15.	External Borrowing	Nil, being 90% funded under PSDF& 10% through internal funding.

Page 41 of 140

Date: 03 08 2022

R Signature: ______ Name: _____

(Authorized Representative)

Format A4 Page 2 of 9

2. Details:

2.1 Cost Estimate: The detailed cost estimate prepared for implementation of the project is given below:

(11)

Page 3 of 9	4602009.00	264910000.00	2655239953.59	269512000.00	2,96,85,67,600.86
•	354990.00	295000.00			
	354000.00	00'000565		ないないないないない	
	INR	INR			
•	Set	Set			
	13.000	898.000			
Capacitor bank having two variable step of 792 Kvar& one Variable steps of 396 kVAr. Bank shall be complete with Capacitor units of 264/132 kVAr, HTT HRC fuse,Surge Suppressor etc. With details as follows-(1) 11 KV, Aluminium Wound, Dry type Series reactors (a) 0.528 kVAr for 792 kVAr step-6 nos. (b) 0.264 kVAr for 396 kVAr step-3 nos. (2) 11 kV, 3-Phase hodoor OIL COOLED Type RVT-1 nos. (3) 12 kV 3 Phase Indoor type metal enclosed Vacuum Contactor-3 nos. (4) Indoor Type Automatic Control Unit-1 No. (5) JP 55, outdoor Control Unit-1 No. (5) JP 55, outdoor Control Unit-1 No. (5) JP 55, outdoor CRCA cubicle panel for supressor etc., alongwith FRP canopy- 1 No.	Annual Maintenance of 3.96 MVAR Capacitor Bank in all respect including material, installation, erection & FMS :- For 5 years	Annual Maintenance of 1.98 MVAR Capacitor Bank in all respect including material, installation, erection & PMS :- For 5 years	Total for Supply	Total for AMC	Total in Figures
	5	¢	-		6

(10)

Superintending Engineer (PCM) Ju, V.V.M.L., JODHPUR

Signuture: Name: (Authorized Representative)

Page 43 of 140

Image: Section of the section is the section of t	3	Si. Item Description Item Quantity Units BASIC	Item	Quantity	Units		BASIC	Any Other Travellution avies	TOTAL	TOTAL
3 4 5 6 7 8 9 1.158 MVAr 0 0 5 6 7 8 9 265 KV, 1980 KVAr, 3- hase, 30 C/s housed in ruel, CRCA and for Type CRCA and for Type CRCA and for States one variable erge of 396 kVAr. Bank and if the complete with approxy insulators. HT HRC 1 1,000 Set 1 8 9 1 22 Kvarge for States one variable erge of 396 kVAr. Bank approxy insulators. HT HRC 1 1,000 Set INR 1317055.00 23 VAr, Aluminium buckers, for Muth data is followed(1) 1 1,000 Set INR 1317055.00 7 Ar, Aluminium buckers, for Muth data is followed(1) 1 1,000 Set INR 1317055.000 7 Ar, Aluminium buckers, for Muth data is followed(1) 1 1,000 Set INR 1317055.000 7 Ar, Aluminium buckers, for Muth data is followed(1) 1 1,000 Set INR 1317055.000 7 Ar, Aluminium buckers, for Muth data is followed(1) 1 1,000 Set INR 7 Ar, Aluminium buckers, followed(1) 1 1,000 Set INR 7 Ar, Aluminium buckers, followed(1) 1 1,000 Set INR 7 Ar, Aluminium buckers, followed(1) 1 1,000 Set INR			Code / Make			Currency in INR / Other Currency			Without Taxes Faxes of F&I and erection Rs. P	- E 2
I.98 MVAr 0 1.98 MVAr 2.65 KV, 1980 KVAr, 3- hase, 50 C/s housed in undoor 1.98 MVAr, 3- hase, 50 C/s housed in undoor 0 2.65 KV, 1980 KVAr, 3- hase, 50 C/s housed in undoor 1.90 C/s housed in swing two variable step of cps of kVAr. Bunk hall be complete with appeny insulators, HT HRC 1 1.1 KV, Aluminism busbers, pony insulators, HT HRC proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, proxy insulators, HT HRC 1 1,000 Set INR 1.1 KV, Aluminism busbers, prox (2) 11 KV, 3- thate 1 1,17055.000 1317055.000 0.01ED Type RVT-1 1 1,17055.000 1317055.000	-			4	N	9	7	40	6	10
1980 kVAr, 3- Type CRCA 1980 kVAr, 3- Type CRCA Type CRCA Type CRCA Type CRCA Cepacitor bank constraible step of real origination busbless, somplete with on toy type Series 1 1 1,000 Set INR 1317055.00 1317055.00 1317055.00 1317055.00 1317055.00 1317055.00 0 0.528 kVAr 1 0 0.558 kVAr 1 0 1 1	+	A 1.98 MVAF	0							
		12.65 kV, 1980 kVAr, 3- Phase, 50 C/s housed in Outdoor Type CRCA Panel, Capacitor bank having two variable step of 792 kvar& one Variable steps of 396 kVAr. Bank shall be complete with Capacitor units of 264/132 kVAr, Aluminium busbars, Epoxy insulators, HT HRC fuse,Surge Suppressor etc. With details as follows-(1) 11 kV, Aluminium With details as follows-(1) 11 kV, Aluminium 0.264 kVAr for 396 kVAr for 792 kVAr for 396 kVAr 700 c.264 kVAr for 701 kV, 3- Phase 10 c.201 kVAr for 701 kV, 3- Phase	-	1,000	ž	ž	OOSSOULLEL	237069.9000	1317055.00	
	-	0 0 0 0				Manage				

(2)

Format A4				9			C
	67024.00	17593.80	108914.00	165884.40	4189.00	20945.00	
	56800.00	14910.00	92300.00	140580.00	3550.00	17750.00	did
	16224.0000	2683,8000	16614.0000	25304.4000	639.0000	3195,0000	del.
	56800.00	4970.00	92300.00	1562.00	3550.00	3550.00	ignature: ame:
	INR	INR	INR	INR	INR	INR	fure:
	No.	No.	2G	Mtr	No.	No.	Signature: Name:
	1.000	3.000	1.000	90.000	1.000	5,000	
	- 74		4	s	9	7	
 ros. (3) 12 kV 3 Phase Indoor type metal enclosed Vacuum Contactor-3 nos. (4) Indoor Type Automatic Control Unit-1 No. (5) IP 55, outdoor CRCA cubicle parel for accommodating capacitors, series reactors, vacuum contactor, surge supressor etc., alongwith FRP canopy-1 No. 	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure.	9 kV, 10 kA, Class III Lightning Arrestor	Control cables, lugs/himble, Junction Box etc.	11 KV 3 Core AI. XLPE Insulated 3x120 mm sq. Cable	11KV XLPE Cable (3x120 sq.mm.) Heat Shrinkable Jointing kit Indoor	11KV XLPE Cable (3x120 sq.mm.) Heat Shrinkable	Dute: 03 06 2022.
	m	4	5		7	80	Dute: D3

	Jointing kit Outdoor			-					Page 6 of 9
	11 KV VCB/Klosk Switchgear for Capacitor Bank with complete arangement of connection.		000'1	No.	INR	651780.00	117320.4000	651780.00	769100.40
1. 1. 1.	Casting of Civil foundations	6	1.000	Job	INR	109340.00	19681.2000	109340.00	129021.20
	Cable trench for laying of power/control cables.	10	50,000	Rmt.	INR	403.00	3627.0000	20150.00	23777.00
	Earthing for Panel 3 Nos., Isotutor 1 No., VCB/Kiosk 1 No. and LA's 1 No. by Chemical pipe earthing	=	i2.00	No.	INR	4970.00	10735.20	59640.00	70375.20
	GI Strip of size-50 x 6 mm, for Connection of Earthing with eulpment	12	300.000	Rmt.	INR	72.93	3938.22	21879.00	25817.22
	Total for Supply					の市の市中では			2956766.12
	Annual Maintenance of 1.98 MVAR Capacitor Bank in all respect incloding material, installation, erection & FMS :-	13			1.5		0.0000	0.00	
	1st Year (Rs. per unit)	14	1	set	INR	40000.00	7200.0000	4000.00	47200.00
	2nd Year (Rs. per unit)	15	1	set	INR	45000.00	8100.0000	45000.00	\$3100.00
	3rd Year (Rs. per unit)	16	-	set	INR	\$0000.00	9000.0000	50000.00	59000.00
	4th Year (Rs. per unit)	17	1	set	INR	55000.00	9900.0000	55000.00	64900.00
	5th Year (Rs. per unit)	18	1	set	INR	60000009	10800.0000	6000.00	70800.00
	Total for AMC	-			1	日本のための			295000,00
Total in Figures						Sector and the	100 1 - S SAM		3251766.12

Mill BENDA) (M.L. BENDA) Superintending End var (FTIA) Ju. Y.V.N.L., JOOHPUR

> Signature: Name: (Authorized Representative)

> > Page 46 of 140

Date: 07 6 2022.

(125)

50	COST ESTIMATE FOR	LOK		AVIV	IN OI	3.90 MVAR UNE SET		a service a serv		
No.	Item Description	Item Code / Make	Quantity Units	Units	Quoted Currency in INR / Other Currency	BASIC RATE RATE include of F&I and erection charges In Figures Rs. P	Any Other Taxes/Duties/Levies	TOTAL AMOUNT Without Taxes include of F&I and erection Rs. P	TOTAL AMOUNT With Taxes Include of F&I and erection charges	Change - Ha
	2	3	+	5	. 9	1	80	6	10	
	A 3.96MVAr						1 1 2			
	12.65 kV, 3960 kVAr, 3- Phase, 50 C/s housed in Outdoor Type CRCA Panel, Capacitor bank having two variable step of 792 kvar& two Variable steps of 1188 kVAr. Bank steps of 1188 kVAr. Bank shall be complete with Capacitor units of 396/264 kVAr, Aluminium busbars, Epoxy insulators, HT HRC fisse, Surge Suppressor etc. with details as follows- (1) 11 kV, Aluminium Wound, Dry type Series reactors a) 0.528 kVAr for 792 kVAr for 1188 kVAr step - 6 Nos. (2) 11 kV, 3- Phase OIL COOLED Type RVT - 1 No. (3) 12 kV, 3 Phase Indoor type metal enclosed Vacuum	-	1.000	ž	ž	1671791.00	300922.56	1671792.00	1972714.56	
Date: A	Date: 112/06/2022			Sil Na	Signature:			44		1
A THINK		West of the second	1.140		Ambuchaul 1	A subscient Barrent attach		ALL DIANDAN		-

(124)

Format A4 Page 8 of 9 165884.40 108914.00 67024,00 17593,80 4189.00 2.1 140580.00 56800.00 14910.00 92300.00 3550.00 10224.00 16614.00 25304.40 2683.80 639.00 56800.00 92300.00 1562.00 3550.00 4970.00 Signature: INR INR INR INR INR Mit No. No. No. 3 ٠ 90.000 1.000 1.000 3.000 1.000 m ø logs/thimble, Junction Box 4 Isolator with earth switch and mounting structure. Insulated 3x120 mm sq. Surge Hear Indoor Type Automatic Control Unit - 1 No.(5) IP for Cable Contactor - 4 Nos. (4) accommodating capacitors, 11 kV, 400 Amp, Off Load 55 , Outdoor CRCA Series Reactor, Vacuum Suppressor etc., along with FRP Canopy-1 set 9 kV, 10 kA, Class III cables, 11 KV 3 Core AL XLPE Shrinkable Jointing Panel Lightning Arrestor ('murbs XLPE contactor, cubicle. (3×120 Control Cable Indoor 11KV etc. . s 6 h

125

MAL BENTA (M.L. BENTA) Superintending E. 2014 Ju. V.V.N.L., JournPurk

> Name: (Authorized Representative)

> > Page 48 of 140

Format A4 Page 9 of 9 3729355.78 3375355.78 769100.40 129021.20 354000.00 70375.20 25817.22 76700.00 20945.00 82600.00 23777.00 70800.00 59000.00 64900.00 651780.00 109340.00 59640.00 21879.00 17750.00 20150.00 50000.00 55000.00 6000009 65000.00 70000.00 . 117320.40 10735.20 11700.00 19681.20 12600.00 10800.00 3938.22 9900.00 3195.00 3627,00 9000.00 50000.00 3550.00 651780.00 403.00 109349.00 60000.00 65000.00 70000.00 72.93 1970.00 INR INR INR INK INR INR INR INR INR INR INR Rmt. Rmt. No. No. No. Job 10 형형 ž 졍 300,000 50.000 \$.000 12.60 . 1.000 1.000 ----12 12 16 11 -2 = 12 2 -60 0 Hent I No. and LA's I No. by, for Connection of Earthing with euipment Cable Switchgear for Capacitor Bank with complete Cable trench for laying of including material, repair, crection & FMS Shrinkable Jointing kit Bank in all respect Earthing for Panel 3 Nos., Isotator I No. VCB/Klosk GI Strip of size-50 x 6 mm Annual Maintenance of 1.98 MVAR Capacitor CIVII VCB/Klosk arangement of connection. Chemical pipe carthing 2nd Year (Rs. per unit) 1st Year (Rs. per unit) 3rd Year (Rs. per unit) 4th Year (Rs. per unit) 5th Year (Rs. per unit) power/control cables. XLPE sq.mm.) **Total for Supply Total in Figures** of Total for AMC foundations KV Casting (3x120 Outdoor 11KV 1 15.02 15.03 15.04 15.05 15.01 12 12 2 = 54 1 0 86

1221-122 II. V.V.N.L., JOLIN' UR (M.L. BFFIT' Superintending un 2

> (Authorized Representative) Name:

Signature:

Page 49 of 140

Date: 03 06 2.022

126

...

Format A4 Page 1 of 6

2.2Cost Estimate

The detailed cost estimate prepared for implementation of the Project is given below. (August is in Crare)

Rs. 296.85crore

(Say Rupees Two Hundred Ninety SevenCrores) only

The BOQ of capacitor bank are attached as Annexure LAIso enclosed the list of Present & Proposed Status for capacitor bank of Sub Stations having more than 2.5 MVA Transformer in JdVVNL as per Annexure-II andthepresent voltage profile and anticipated voltage profile after installing the capacitor bank are attached as Annexure – III.

The costs for installation of 1980 kVAr and 3960 kVAr and their associated equipment are based on the rate of recentLOAs awarded by PVVVNL and approved by PSDF in year 2021.

3.1 FUNDING

3.1.1 Funding Proposed from PSDF as grant

90% funding is being proposed through PSDF for implementation of 911 solution on 33/11 kVsubstationJodhpurin the general interest for strengthening the medium voltage network of the state and to automate reactive power and to optimize the performance of the distribution grid of JdVVNL sub stations.

3.1.2Contribution from Internal Sources

10% funding through internal funding.

3.1.3External Borrowings

No external borrowing is envisaged as the project is planned for 90% funding through PSDF and 10% through internal funding.

Page 50 of 140

(M.L. BE*IDA) Superintending Englacement(PPM) Ju. V.V.N.L., CODAPUR

Date: 03 0 8 2022

Signature: Name: (Authorized Representative)

Format A5 Page 1 of 1

128

Brief Details of the Project Appraisal by CTU/STU/RPC

Item	Details to be fille	ed by Applican	t Utility	
Appraisal By:	сти'	STU	RPC	
Date of Submission to CTU/STU/RPC for approval	Submitted on			
Name of the Scheme			STATIONS INJODHI	
Details of the Appraisal Report by CTU/STU/RPC	Reference no		67. Star	18.3
	Summary of Pro	posal Apprais	ed	
	The DPR has b	een prepared ability, enhar	so as to improve & cement of system,	
	Technical Obser	vations		
	the respective 33/1 the minimum and	1 kV substation to strengthen th	n proper voltage profile thereby reducing reactive the medium voltage network bution licensee i.e. JdVV	e power losses to work of the state
	Financial Obser	vations	and the second se	
Summary of observation from CTU / STU / RPC Appraisal Report	associated equipt by PVVNL and a escalated @42% cell but in PVVN panels) onin allie inflation in raw r in FY 20-21. The price inflatio 2020 has been	ment are based approved by PS (Price Variation) (L considered st ad equipment a material cost si on in raw mater considered. A n inculcated	980kVAr and 3960 k on the rate of recent DF in year 2021 The p on clause applicable or ame PV escalation fac ndin automatic capacito nce the last order place ial that is Aluminum an lso, the drastically in for supply and con	LOAs awarded rices have been aly on capacito tor on complete or panels due to ed to the vendor and Copper since increased terrain
	Compliance of (Grid Standard	s / Codes by the Appl	icant
			2010 shall be complied.	
	Limitations / Sh	ortcomings po	inted out by CTU/ST	U/RPC if any
	Installation proce	ess may take co	nsiderably time	
	Recommendatio			

Date: 03 .8 2022

94

(M.L. BENDA) Name: SuperiPression St. of 149 Sec. PPC M(Authorized Representative) Ju. V.V.N.L., JCUMPUR

Signature:

Format A6 Page 1 of 1

UNDERTAKING

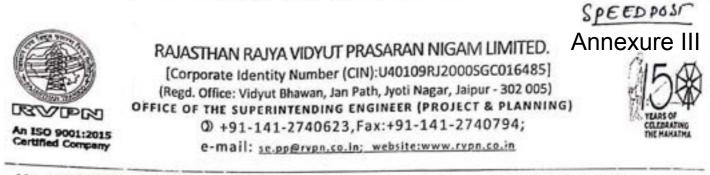
I. Mr. PramodTak son of resident of Jodhpur and presently working as Managing Director in Jodhpur VidyutVitran Nigam Ltd., Jodhpur hereby undertake to comply with the following terms and conditions with regard to funding of the "Installation of Reactive Power Solution on 33/11 kV substation in Jodhpur" with disbursement from PSDF:

No tariff shall be claimed for the portion of the scheme funded from PSDF.

- Amount of grant shall be refunded in case of transfer/disposal of the facility being created under this proposal to any other scheme for funding.
- Shall specifically mention if for the scheme under the proposal, the grant from any other agency is being taken/proposed to be taken.

The scheme under the proposal has neither been applied for grant from any other agency nor being proposed to any agency.

The grant shall be refunded back to PSDF in case of non-utilization of the grant within one year of release of installment.


(M.L. BENDA) Superintending Encineer (PPM) Ju, V.V.N.L., JODHPUR

Page 52 of 140

Date: 03 08 2022

Si	gn	ati	ire:	1
Ňa	um	e:		

(Authorized Representative)

No. RVPN/SE(P&P)/XEN -2/AE-III/ F. /D 1714 Jaipur, Dt. 13/12/2022

Member Secretary

Northern Regional Power Committee, 18-A, Shaheed Jeet Singh Marg, Katwaria Sarai, New Delhi-110016

Sub: Submission of agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'. Dear Sir.

On the above captioned subject, kindly find enclosed herewith the agenda note for Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund. Summary of the scheme is mentioned below:-

S. No.	Scheme details	Estimated Amount
		(Rs. In Cr.)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur Vidyut Vitran Nigam Limited (JVVNL)	180.47

Enclosure:

- 1. Agenda Note of JVVNL
- Annexure A- DPR provided by JVVNL
- Annexure B- RERC Order dated 24.03.2001
- Annexure-C- Rajasthan Electricity Grid Code, 2008
- Annexure-D- Format A5: Appraisal by STU

(S.C.Meena) Chief Engineer (PP&D)

Forn	lé	at	A	5
Page	1	0	f1	

Brief Details of the Project Appraisal by CTU/STU/RPC

The applicant utility shall submit project appraisal by CTU / STU / RPC in the given format and a copy of the Appraisal Report should be attached at Annexure.

ltem	Details to be filled by Applicant Utility										
Appraisal By:	STU СТU	RPC									
Date of Submission to CTU / STU / RPC for approval	Scheme was submitted to Rajasthan 13.10.2022.	Rajya Vidyut Prasaran Nigam Ltd. (STU) by JVVNL on date									
Name of the Scheme	Installation of Dynamic/Automatic capa Vidyut Vitran Nigam Limited (JVVNL) u	citor banks on 11 kV side of 33/11 kV substations of Jaipur nder PSDF-Phase-I									
Copy of the Appraisal Report by CTU / STU / RPC is Attached at Annexure	Yes No]									
	Summary of Proposal Appraised	The DPR has been prepared so as to improve & strengther the operational reliability, enhancement of system, real-time data capturing and better management of reactive power.									
Summary of observations from CTU/ STU/RPC	Technical Observations	As per the order of Rajasthan Electricity Regulatory Commission (RERC) dated 24.03.2001, 50% of the total MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). This project report proposes installation of 1160 MVAR which is justified given their target of 1660 MVAR for operational reliability and effective voltage control.									
Appraisal Report	Financial Observations	As per guideline/procedure for disbursement of funds from PSDF in category 5.1(b), this scheme may be posed for funding/ grant from PSDF fund on 90% basis.									
	Compliance of Grid Standards / Codes by the Applicant	All the grid standards, IS, IEC required, shall be followed for implementation of the scheme									
	Limitations / Shortcomings pointed out by CTU/STU/RPC if any	NIL									
	Recommendations of CTU/STU/RPC	The scheme may be posed for funding/ grant from PSDF fund.									

Date:-

Chief Engineer (PP&D) RVPN, Jaipur

Scanned with OKEN Scanner

PSDF Project Proposal

5

Agenda note for consideration and approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'.

L

The proposal herein is to accord approval of Installation of Capacitor Banks on 11 KV Side 33/11 KV Substations of Jaipur DISCOM (Rajasthan) for Reactive Power Compensation under Power system Development Fund (PSDF)-Phase 'I'.

II

Power System Development Fund (PSDF) provides grant for improvement of Transmission System. PSDF provides fund for the following categories-

- a) Creating necessary transmission system of strategic importance based on operational feedback by load dispatch centers for relieving congestion in interstate transmission system and intrastate system which are incidental to ISTS.
- b) Installation of shunt capacitor, series compensators and other reactive energy generators including reactive energy absorption, dynamic reactive support etc. for improvement of voltage profile in the Grid.
- c) Installation of standard and special protection schemes, pilot and demonstrative projects, projects for setting right the discrepancies identified in the protection audit on regional basis, any communication/ measurement / monitoring schemes including installation of Phasor Measurement Units (PMUs) etc.
- d) Renovation & Modernization of transmission and distribution system for relieving congestion.
- e) Any other scheme/project in furtherance of the above objectives, such as conducting technical studies and capacity building etc.
- f) Other schemes benefitting large number of utilities collectively and having a significant impact towards the power system development and Grid operation, on case to case basis.

S.	Scheme details	Approval	Estimated	A&FS issued	Proposed Grant
No.		from BoD	Amount	on dated	(%age)
			(Rs. In Cr.)		
1	Installation of Capacitor	08.08.2022	180.47	08.08.2022	90%
	Banks on 11 KV Side				
	33/11 KV Substations of				
	Jaipur Vidyut Vitran				
	Nigam Limited (JVVNL)				

Presently, scheme detailed as under are posed for approval of funding from PSDF.

PSDF-NLDC in its 66th meeting of TESG held on dated 29.09.2022 has desired the appraisal from regional power committee (NRPC) for the scheme to be funded from PSDF.

Brief note on the scheme-

- 1. Due to the spread of population in the remote areas of Rajasthan in recent years, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; and power is supplied to the domestic, non-domestic and industrial sector too. It has been identified that these loads are highly inductive in nature which need rectification.
- 2. In this regard, JVVNL has proposed to install dynamic/ automatic capacitor banks under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawl of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.
- 3. It has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, installation of capacitor banks on 11 kV side of 33/11 kV substations has been proposed at various circles having 'power factor less than 0.85.
- JVVNL proposes installation of *capacitor banks at 577 Nos. of 33/11 kV substations* out of total 1893 Nos. of substations spread across 13 circles and 12 districts of Rajasthan. *Total MVAR installation will be 1159.176 MVAR.* Detailed list of these substations have been enclosed with DPR.
- 5. Methodology adopted by JVVNL consists of extracting previous year data from dedicated Feeder Monitoring System (FdrMS) to have greater insights about *'real time'* power supply of 11 kV feeders. The data was further analyzed and cross checked with the field on sample basis to arrive at the conclusion.
- 6. Approximately 20 lakh consumers at these 577 Nos. of substations along with the concerned STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd.) shall be benefitted with these measures.
- 7. Total cost of the scheme comes around 180.47 cr. for which detailed cost estimated have been enclosed with the DPR.

Detailed Project Project (DPR) is placed as Annexure-A.

Appraisal by the STU (Rajasthan Rajya Vidyut Prasaran Nigam Ltd. (RVPNL))-

RVPNL understands that proposal by JVVNL to install 577 Nos. of capacitor banks at 11 kV side on their 33/11 kV substations in technically and financially justified.

As per the order of Rajasthan Electricity Regulatory Commission (RERC) dated 24.03.2001, 50% of the total MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). (Copy of the order enclosed as Annexure-B).

Further, The clause no. 11.4 of Rajasthan Electricity Grid Code, 2008 states that "The DISCOMs shall participate in voltage management by providing Local VAR compensation as far as possible, in low voltage system close to load points not depending on EHV Grid for reactive support." (Copy of the clause enclosed as Annexure-C).

This project report proposes installation of approx. 1160 MVAR which is justified given their target of 1660 MVAR for operational reliability and effective voltage control. Thus, as per appraisal of RVPN (STU), this scheme is technically & commercially justified. (Appraisal by STU in Format-A5 has been enclosed as Annexure-D).

III

The agenda is hereby placed before NRPC for approval, after appraisal of RVPN (STU) in Annexure A5 of following scheme for further submission to NLDC-PSDF for availing 90% grant:

S.	Scheme details	Estimated Amount
No.		(Rs. In Cr.)
1	Installation of Capacitor Banks on 11 KV Side 33/11 KV	180.47
	Substations of Jaipur Vidyut Vitran Nigam Limited (JVVNL)	

SUMMARY OF PROPOSAL

For Official Use - To be filled by the Nodal Agency

Project Proposal Number : _____

1

٦

7

٦

7

-

7

7

٦

2

7

2

٦

*

2

٦

2

٦

*

٩

٩

٩

Date of Receipt : _

Format A1 Page 1 of 1

ļ,	Nan	ne of the requesting Organization / Utility :	Jaipur Vidyut Vitran Nigam Limited
2.	Sho	rt Summary of Project / Scheme / Activity	
	а.	Name and location of the Project / Scheme / Activity :	Provision of 11 kV Dynamic/ Automatic Switched Capacitor Bank at various 33/11 kV Sub-stations
	b.	Objective of the Project / Scheme / Activity :	To improve power factor and hence reduce reactive current (reduction of T&D Loss), improvement in voltage profile, reduction in demand at various 33/11 kV Power Transformer
	C.	Authorized Person For this Project / Scheme / Activity	Name: Mr. Umesh Gupta (ACE, PPM)E-mall ID: sera@ivvnl.orgLand line No : -NA-Mobile No.: +91-99828 00244Fax No: 0141-2209533
	d.	Nature of the Project / Scheme / Activity: Inter - State / Intra - State (Please Specify)	Intra State
	e.	Identified Beneficiaries	Rajasthan State (in particular) & Nation (in general)
	f.	Merits of the scheme	With implementation of the scheme , overall redundancy in the system will be provided.
	g.	Limitations, if any	No limitation envisaged
	h.	Time frame for Implementation	The scheme is scheduled to be completed within 24 months progressively from date of receipt of sanction of grant/ fund.
	i.	Estimated Cost of Project / Scheme / Activity	Rs 180.47 Crores
	j.	Category under which the project is classified (Please refer Para 5.1 of the Guidelines/Procedure)	5.1 (b) of Guidelines/ Procedure (PSDF)

Date: 24-11-2022

Name: Umesh & dddl. Chief Engineer (PPM) (Authorized Representative) L. Jaipur

PSDF Project Proposal

DETAILED PROPOSAL (DP)

1. Details of the Requesting Organization / Project Entity

1.1 Details of Organization / Entity

Name of Organization / Entity	Jaipur Vidyut Vitran Nigam Limited	
Acronym or Abbreviation (if applicable)	JVVNL	

1.2 Details of Head of the Organization

Name (Mr / Ms / Mrs)	Mr. Ajeet Kr. Saxena
Designation	Managing Director, JVVNL, Rajasthan
E-mail Address	md@jvvnl.org
Landline No.	-NA-
Fax No.	-NA-
Address	Jan Path, Jyothi Nagar, Lalkothi, Jaipur, Rajasthan
City	Jaipur
Postal Code	302005

1.3 Details of Project Incharge/ Project Manager (Authorized Person) for this project/ scheme/ activity (Not below the rank of Dy. General Manager/ Superintending Engineer)

Name (Mr / Ms / Mrs)	
Designation	Superintending Engineer
E-mail Address	•
Landline No.	
Mobile No.	
Fax No.	•
Address	Respective Circles under JVVNL Discom
City	Jaipur
Postal Code	

Any Change in above mentioned details may be notified to the Nodal Agency of PSDF immediately.

2. Justification of the Proposal

2.1 Analysis of the Objective

Rajasthan is the largest state in the country, in terms of area, spreading across 3,42,239 Sq. km, which is 10.41% of the nation area. The total population of Rajasthan is nearly 8.1 Crores spread across 33 Districts, of which 75% is rural population. The density of population in Rajasthan is 200 per sq.km which is much lower than the national average of 382 per sq.km. The state is, predominantly, an agrarian society with majority (45%) of the population depending on agriculture activities as source of income, which accounts for around 29.5% of Gross State Domestic Product (GSDP).

Due to this spread of population, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; however, the intensive power is too supplied to the domestic, non-domestic and industrial sector. It has been identified that these loads are highly inductive in nature which need rectification. In this regard, JVVNL has proposed to install dynamic/ automatic capacitor bank under which the capacitive load helps to adjust power factor as close to 'Unity Power Factor'. The implementation of the project/ scheme will limit the heavy drawal of reactive power from grid and mitigate the risk such as (a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.

Under JVVNL Discom, efforts have continuously been made to provide requisite reactive power compensation; however, the challenge associated with low voltage at the load end and drawl of heavy reactive power from the grid still persists due to fast growing load demand. Additionally, it has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, the provision for the installation of shunt capacitor has been proposed at various circles having power factor less than 0.85 so that it would result in following advantages as stated below.

1. Advantages to the Consumers

- A substantial reduction in the power cost, due to reduced kVA demand and elimination of penalty for low power factor (where tariff is based on kVA demand).
- Reduced over-loading means reduced losses and less heating in consumer's equipments, such as, cables, motors etc.
- A more stable voltage, which means a better and more efficient performance of the motors.
- Connection of more consumers' equipment to the same installation.

2. Advantages to Power Supply Utility

- Reduction of losses in lines and transformers.
- Release of power system capacity enables additional load to be connected on the same system without capital investment on additional equipment.
- Improvement in Voltage Level.
- Reduction of over loading means less heating of cables, conductors, transformers etc.
- A better utilization of the capacity of the generators, transformers, switchgear, cables, lines, etc., means increase in efficiency of the system.
- Reduced depreciation charges on capital outlay and less capital investment.
- Reduced reactive power drawn charges to NRLDC.

3. Reduction of Overall Technical & Commercial Losses

2.2 Identified Beneficiaries of the Project

Adequate reactive power compensation offered salient benefits to the power system which includes voltage regulation (i.e., voltage control within acceptable limits), system power losses reduction brought about by power factor improvement and it increases the utilization of connected equipments at the consumer end, improves reliability of transmission system and more importantly efficiency of real power made available at the consumer end. Hence, the identified beneficiaries of the project shall be (a) Rajasthan State (in particular), including Rajasthan Rajya Vidyut Prasaran Nigam Limited & Jaipur Vidyut Vitran Nigam Limited (Approx. 20 Lakhs Consumers under 12 Circles) and Nation (in general).

2.3 Identified Source of Funding

90% of the total project cost estimate is to be funded through grant from PSDF, balance 10% amount will be contributed from internal/ external resources.

2.4 Details of Activities for Project/ Scheme/ Activity

After getting approval of the project towards funding, the following activity will be undertaken to achieve desired results:

- Identification of phases (I & II) based on total number of 33/11 kV sub-stations and approved/ sanctioned amount.
- 2. Formulation and conduct of tendering process on turnkey basis and from reputed manufacturer.
- 3. Issuance of Lol/ LoA/ Work Order to L1 (lowest) bidder/ contractor/ vendor etc.
- 4. Placement of erection & commissioning order.
- 5. Regular monitoring & controlling of technical and financial aspects.

The project incharge/ project manager/ area manager in the rank of superintending engineer will supervise the overall project work in their respective jurisdiction, further progresses of work are being reviewed monthly at head quarter by the Manging Director, JVVNL with representation from all authorised person.

2.5 Executing Agency

The project will be implemented at different 33/11 kV sub-stations located at different circles under JVVNL jurisdiction, as such it will be implemented by contracting agency to whom work order is awarded.

2.6 Timeline for Implementation of Project/ Scheme/ Activity

Timeline for implementation of the proposed project/ scheme is provided below under considering date of receipt of PSDF grant approval as 'Zero Date':

- 1. Finalization of Tender Documents & Issuance of Work Order: 03 Months
- Procurement, Installation, Commissioning & Testing of Equipments: 20 Months (Progressive Basis)
- 3. Cost Benefit Analysis & Report Submission on Improved Power Factor: Last Month

Timeline of the Project/ Scheme/ Activity								
Duration of Project (in Months)	24 Months (03 months tendering process + 21 months implementation)							
Likely Start Date	Date of Receipt of Approval from PSDF Funding							
Likely Completion Date	30 September 2024							

			_	_	_	_	_				_	TU	MEL	INE	_	_	_		_	_				_	
ź	N	FY 2022-23 FY 2023-24												_	FY 2024-25										
2.12	Description	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	grun-23	Aul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24	hun-24	341-24	Aug-24	Sep-24
in	alization of Tender Documents & Issuance of Work Order								-		-														7.
1	Project Approval																								- I-
2	Conduct of Committee Meeting							1																	
3	Preparation & Release of Tender Document																	1							-7
4	Evaluation, Contract Award and Mobilization																								
10	curement, Installation, Commissioning & Testing of Equipments								_																ŀ
5	1st Disbursement (30% of Grant)				11																				
6	Procurement, Installation, Commissioning & Testing of Equipments											10	e-raiji			14			-			ΕP	1.00		
7	Bi-monthly Review Meeting							10			-						-			1					
8	Monthly Report Submission													11											
9	2nd Disbursement (60% of Grant) i.e. After Utalization of 30% Grant + 10% Self-contribution (JWNIL)										*														1
Ce:	t Benefit Analysis & Report Submission on Improved Power Factor						_									_									
0	Submission of Draft Report																			1					1
11	Final Report Submission			1			-																		
12	3rd Disbursement (10% of Grant) i.e. On Completion of Scheme																								03

Date: 24-11-2022

Signature:

Name: Umesh Gupta

(Authorized Representative) Addl.Chief Engineer (PPM)

Summary of Detailed Project Report (DPR)

The scheme is to provide an effective control of capacitor bank installations in sub-stations to maintain power factor under varying load conditions, for any sub-station load on transformer changes during a 24 hours daily load cycle. This variation of load depends upon type of load i.e. urban, rural, agricultural, industrial load etc. The load pattern will be different for different loads. Thus, load variation will follow certain pattern, and which could be divided into four or six periods in a 24 hours daily load cycle. Power factor would also vary and at the same time actual requirement of Capacitors in circuit will also vary. If steps are provided with capacitor banks to switch them as required, it will help the Electricity Supply Authority to maintain the power factor at desired level throughout the day. This load variation has been observed to change from 8% to 100%.

Outdoor type H.T. capacitor bank with facility of automatic switching of required number of steps with the help of capacitor switch. The bank comprising of externally Single Star Connected Capacitor Bank, 0.2% Series Reactors for switching inrush current suppression at neutral end, Vacuum Contactor for capacitor switching, HRC Fuses, RVT for unbalance protection and CRCA cubicle panel to accommodates all components stated above.

Hence, JVVNL Discom has finalized and decided to install dynamic/ automatic capacitor bank on the various MVA ratings power transformer installed at various 33/11 kV sub-stations. The detailed list on which work will be carried out is enclosed under Annexure – 'I' of DPR.

Sr. No.	Transformer Capacity (In MVA)	Proposed Quantity (In Nos.)
1	3.15/5	563
2 8		14
	Total	577

Summary of DPR given - Yes	Copy of the DPR attached – Yes
1	

Format A3
Page 2 of 3

Cost Break-up of Sub-station Equipment

Name of the Substation : -NA-

Sr. No.	Description of the Equipment to be replaced (rating, type)	Unit (Nos./Set)	Quantity	Rate including taxes	Total	Spares	Erection/ Civil Works	Total
400 kV			-NA-					
220 kV			-NA-					

Note : One table for each substation

	Abstract Cost Estimate Sub-station (Rs. In Lacs)							
Sr. No.	Description of Equipment	Sub-station Name-1	Sub-station Name-2	Sub-station Name-3			Total	
400 kV			-NA-					
220 kV			-NA-					

Details of Existing Equipment

Name of the Substation : -NA-

SI. No.	Name of Feeder	Equipmen t Name	Year of Manufact uring and make	Date of Commissi oning	Voltage	No. of cores available (in case of CT/PT)	Type of insulation /operatio n	Tagged for replace ment (yes/no)	Reas on for repla cem ent
400 k	V			-N	IA-				-
220 k	V			-N	IA-				

Note : One table for each substation

		Abstr	act Quantity Estim	ate Sub-station	 	
Sr. No.	Description of Equipment	Sub-station Name-1	Sub-station Name-2	Sub-station Name-3		Total
400 k	v		-NA-			
220 k	v		-NA-			

-

Implementation Schedule/ *Milestones

Particular	Total	Quarter 1	Quarter 2	Quarter 3	Quarter 4	
1980 kVAr	563	Tendering Process	80	80	80 7	
3174 kVAr	14			7		
Particular	Quarter	r5	Quarter 6	Quarter 7	Quarter 8	
1980 kVAr	80		100	100	43	

For Financial Milestone

.

Particular	Total (Rs. Cr.)	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Power Factor Improvement Cost	180.47	Tendering Process	28	28	25

Particular	Quarter 5	Quarter 6	Quarter 7	Quarter 8
Power Factor Improvement Cost	25	31.5	31.5	11.47

*Note: The above implementation schedule/ milestones are tentative and may vary during the tender period.

Date: 24-11-2022

Signature:

Name: Umesh Gupta

-

(Authorized Representative) Addl. Chief Engineer (PPM)

PSDF Project Proposal

à,

3174 kVAr

.

Financial Implication of the Scheme

(Guidelines: The financial implications of the proposal may be worked out as accurately as possible and should be detailed in this section. Further, the manner in which the expenditure is proposed to be borne may also be clearly indicated. Please provide the project cost estimate for its scheduled duration along with a break-up of year-wise, component-wise expenses segregated into non-recurring and recurring expenses.)

1. Summary

0

S.No.	Item	Amount (Rs. Cr.)	
1.	Total Cost Estimate	180.47	
2.	Funding Proposed from PSDF	162.43	
3.	Contribution from Internal/ External Sources	18.05	

2. Details

2.1 Cost Estimate

(A) Cost break-up of 11 kV Switched Capacitor Bank at 3.15 / 5 MVA Power Transformer

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost
1	2	3	4	5	6	7
1	12.65 kV, 1980 kVAr, 3-Phase, 50 Hz, Outdoor Type CRCA Panel, Capacitor Bank having variable steps of 792 kVAr + 792 kVAr + 396 kVAr. Bank shall be complete with Capacitor units of 132 kVAr for 396 kVAr & 264 kVAr for 792 kVAr step at 7.3 kV, including allied material such as suitable size of aluminum busbars epoxy insulators, HRC fuses, vacuum contactor, series reactors, RVT, etc. with details as under	Nos.	1	1,180,000.00	1,180,000.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL) - On Pro rata Basis - – Enclosed under Annexure 'II'
a)	11 kV, 0.2%, Aluminium Wound, Dry type Series	Nos.	6			

PSDF Project Proposal

	reactors suitable for 792 kVAr					
b)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 396 kVAr	Nos.	3			
c)	11 kV, 3-Phase dry type RVT	No.	1			
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	3			
e)	Surge Suppressor	No.	1			
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1			
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1			
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL) - – Enclosed under Annexure 'III'
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
5	*Cable Support Structure, Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing CI Pipe Dia 150 mm, Dog Conductor	LS	1	61,506.95	61,506.95	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as

	Cable (Indoor termination kit)					per Standard Issue Rate
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	dated 20.05.2022 - – Enclosed under Annexure 'IV'
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
10	**Control cables of various sizes	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under
11	11 kV CT 400 - 200/5 A Outdoor Type	Nos.	3	10,611.00	31,833.00	Maharashtra Discom (MSEDCL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
	Sub-Tota	(A)			1,964,239.89	
13	Transportation on material	LS	4%		78,569.60	PSDF Approved
14	Erection cost on material	LS	5%	-	98,211.99	Scheme under
15	Insurance, Labour & Finance Cost	LS	3%		58,927.20	Maharashtra Discom
16	Service Cost	LS	12%		235,708.79	(MSEDCL)
	Sub-Tota	(B)			471,417.57	
	Total (C) = (/	A) + (B)			2,435,657.46	
17	Applicable GST	-	18%		438,418.34	PSDF Approved
18	Price Escalation on cost of material	•	10%	·	196,423.99	Scheme under Maharashtra
19	***Civil Cost	LS	1	53,857.50	53,857.50	Discom (MSEDCL)
	Sub-Tota				688,699.83	201 80 C - 44 C C & C
	Grand Total (E)	= (C) + (D))		3,124,357.30	

Note: As JVVNL is not under practice of regular installation of APFC, hence the cost estimation has been considered from recently approved PSDF Scheme of PVVNL & MSEDCL. Also, considered JVVNL 'Standard Issue Rate' dated 20.05.2022 for some of the items. Additionally, the cost towards annual maintenance charges (as shown below) shall be borne by JVVNL as internal/external source of funding.

Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	1st Year	Job	1	50000.00	50,000.00
2	2nd Year	Job	1	60000.00	60,000.00
3	3rd Year	Job	1	70000.00	70,000.00
4	4th Year	Job	1	80000.00	80,000.00
5	5th Year	Job	1	90000.00	90,000.00
	Tot	al			350,000.00
	Total AMC Cost for 05 Years consi	dering 563 Nos. of A	PFC		197,050,000.0

Item Wise Cost Breakup:

(A.1) *Cost Structure for 11 kV Station Capacitor Bank - For 1980 kVAr

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00
4	Cable Support Structure (2 Nos.)	Kg	200	51.80	10,360.00
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00
7	Dog Conductor	Mtr.	60	51.82	3,109.20
	Total		1.02555		61,506.95

(A.2) ** Cost Structure for Control Cables - For 1980 kVAr

Sr. No,	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60
	Total				43,818.20

(A.3) *** Cost Structure for Civil Work - For 1980 kVAr

Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6

	2010/2012/07/0	Total				53,857.50
5	Back Filling		CuM	2	100.00	200.00
4	Steel		Kg	300	51.80	15,540.00
3	RCC		CuM	5	5255.00	26,275.00
2	PCC		.CuM	2.5	4257.00	10,642.50
1	Excavation		CuM	8	150.00	1,200.00

(B) Cost break-up of 11 kV Switched Capacitor Bank at 8 MVA Power Transformers

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost	
1	2	3	4	5	6	7	
1	12.65 kV, 3174 kVAr, 3-Phase, 50 Hz, Outdoor Type, CRCA panel having 4 step as 396.75 kVAr + 396.75 kVAr +1190.25 kVAr +1190.25 kVAr at 12.65 KV. Bank shall be complete with Capacitor units of 132.25 kVAr for 396.75 kVAr & 396.75 kVAr for 1190.25 kVAr at 7.3 kV including allied material such as suitable size of Aluminum busbars epoxy insulators, HRC fuses, Vacuum contactor, series reactors, RVT, etc. with details as under	Nos.	1	5 1,271,186.00	1,271,186.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL) – Enclosed under Annexure 'II'	
a)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 396.75 kVAr	Nos.	6				
b)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 1190.25 kVAr	Nos.	6				
c)	11 kV, 3-Phase dry type RVT	No.	1				
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	4				
e)	Surge Suppressor	No.	1				
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1				
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1				

PSDF Project Proposal

2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL) - – Enclosed under Annexure 'III'	
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)	
4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)	
5	*Cable Support Structure, Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing Cl Pipe Dia 150 mm, Dog Conductor	LS	1	61,506.95	61,506.95	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)	
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular	
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Indoor termination kit)	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as per Standard	
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	Issue Rate dated 20.05.2022 - – Enclosed under Annexure 'IV'	
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)	
10	**Control cables of various	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under	
10	sizes						

12	2414-14 / 202 411 2 11	1				(MSEDCL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
	Sub-Total	(A)		18	2,055,425.89	
13	Transportation on material	LS	4%	-	82,217.04	PSDF Approved
14	Erection cost on material	LS	5%		102,771.29	Scheme under Maharashtra Discom
15	Insurance, Labour & Finance Cost	LS	3%		61,662.78	
16	Service Cost	LS	12%		246,651.11	(MSEDCL)
	Sub-Total	(B)			493,302.21	
	Total (C) = (A	() + (B)			2,548,728.10	
17	Applicable GST	-	18%		458,771.06	PSDF Approved
18	Price Escalation on cost of material	•	10%		205,542.59	Scheme under Maharashtra
19	***Civil Cost	LS	1	53,857.50	53,857.50	Discom (MSEDCL)
	Sub-Total	(D)			718,171.15	
	Grand Total (E)	= (C) + (D)		3,266,899.25	

Note: As JVVNL is not under practice of regular installation of APFC, hence the cost estimation has been considered from recently approved PSDF Scheme of PVVNL & MSEDCL. Also, considered JVVNL 'Standard Issue Rate' dated 20.05.2022 for some of the items.

Additionally, the cost towards annual maintenance charges (as shown below) shall be borne by JVVNL as internal/ external source of funding.

Annual Maintenance Charges after Guarantee Period for 05 Years (1 Year + 5 Year's)

Sr. No.		Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1		2	3	4	5	6
1	1st Year		Job	1	50000.00	50,000.00
2	2nd Year		Job	1	60000.00	60,000.00
3	3rd Year		Job	1	70000.00	70,000.00
4	4th Year		Job	1	80000.00	80,000.00
5	5th Year		Job	1	90000.00	90,000.00
		Total	1000	1854		350,000.00
	Total	AMC Cost for 05 Years consider	ring 14 Nos. (of APFC		4.900.000.00

Item Wise Cost Breakup:

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00
4	Cable Support Structure (2 Nos.)	Kg	200	51.80	10,360.00
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00
7	Dog Conductor	Mtr.	60	51.82	3,109.20
	Total				61,506.95

-2- A.L.

(B.1) *Cost Structure for 11 kV Station Capacitor Bank - For 3174 kVAr

(B.2) **Cost Structure for Control Cables - For 3174 kVAr

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60
	Total				43,818.20

(B.3) ***Cost Structure for Civil Work - For 3174 kVAr

Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	Excavation	CuM	8	150.00	1,200.00
2	PCC	CuM	2.5	4257.00	10,642.50
3	RCC	CuM	5	5255.00	26,275.00
4	Steel	Kg	300	51.80	15,540.00
5	Back Filing	CuM	2	100.00	200.00
	T	otal			53,857.50

3. Funding

- 3.1 Funding Proposed from PSDF as grant: Rs. 162.43 Cr.
- 3.2 Contribution from Internal/ External Sources: Rs. 18.05 Cr.

Date: 24-11-2022

Signature:

Name: Umesh Gupta

(Authorized Representative) Addl, Chief Engineer (PPM)

Format A5 Page 1 of 1

Brief Details of the Project Appraisal by CTU / STU / RPC

be attached at Annexure.		In the given format and a copy of the Appraisal Report should
Item	Details	to be filled by Applicant Utility
Appraisal By:	STU СТU	RPC
Data of Submission to CTU / STU / RPC for approval	Scheme was submitted to Rejasthan 13.10.2022.	Rajya Vidyut Prasaran Nigam Ltd. (STU) by JVVNL on dated
Name of the Scheme	Installation of Dynamic/Automatic capa Vidyut Vitran Nigam Limited (JVVNL) u	citor banks on 11 kV side of 33/11 kV substations of Japur inder PSDF-Phase-I
Copy of the Appraisal Report by CTU / STU / RPC is Attached at Annexure	Yes No]
	[DPR enclosed at Enclosure-1)]	
	Summary of Proposal Appraised	The DPR has been prepared so as to improve & strengther the operational reliability, enhancement of system, real-time data capturing and better management of reactive power.
Summary of observations	Technical Observations	As per the order of Rajasthan Regulatory Electricit Commission (RREC) dated 24.03.2001, 50% of the tota MVAR requirement (presently approx. 10000 MVAR) shall be compensated by RVPN, while remaining 50% shall be compensated by remaining DISCOMs (16.6% by each DISCOM). This project report proposes installation of 1160 MVAR which is justified given their target of 1660 MVAR to operational reliability and effective voltage control.
Appraisal Report	Financial Observations	As per guideline/procedure for disbursement of funds from PSDF in category 5.1(b), this scheme may be posed for funding/ grant from PSDF fund on 90% basis.
	Compliance of Grid Standards / Codes by the Applicant	All the grid standards, IS, IEC required, shall be followed for implementation of the scheme
	Limitations / Shortcomings pointed out by CTU/STU/RPC if any	NIL
	Recommendations of CTU/STU/RPC	The scheme may be posed for funding/ grant from PSDF fund.

Date -

.

-

-

-

٦

•

ŝ

ŝ

ŝ

ċ

ZMS

Chief Engineer (PP&D) Chief Engineer (PP&D) R.V.P.N.L. JAIPUR

PSDF Project Proposel

Format A6 Page 1 of 1

UNDERTAKING

(On a Non-judicial Stamp paper of Rs. 50 only duly notarized and attested)

<Not Required - Already Submitted>

I, Mr. Umesh Gupta son of Shri B.L. Gupta resident of Chitrakoot, Valshali Nagar, Jaipur, Rajasthan and presently working as Superintending Engineer (Regulation) in the Jaipur Vidyut Vitran Nigam Limited, Jaipur (Rajasthan) hereby undertake to comply with the following terms and conditions with regard to funding of the "Installation of Capacitor Banks on 11 kV Side of 33/11 kV Substations for Reactive Power Compensation under Power System Development Fund (PSDF) (name of the scheme) with disbursement from PSDF:

- No tariff shall be claimed for the portion of the scheme funded from PSDF.
- Amount of grant shall be refunded in case of transfer/ disposal of the facility being created under this
 proposal to any other scheme for funding.
- Shall specifically mention if for the scheme under the proposal, the grant from any other agency is being taken/ proposed to be taken.
- The grant shall be refunded back to PSDF in case of non-utilisation of the grant within one year of release of instalment.

Date:

-

-

7

1

1

7

~

-

~

1

2

1

7

1

1

~

1

Signature:

Name: Umesh Gupta

(Authorized Representative)

PSDF Project Proposal

Detailed Project Report

ANNEXURE 'B'

REVISED DETAILED PROJECT REPORT (DPR) FOR

System Improvement Scheme

Installation of Capacitor Banks on 11 kV Side of 33/11 kV Substations for Reactive Power Compensation under Power System Development Fund (PSDF) – Phase 'I'

Estimated Cost: Rs. 180.47 Cr.

JAIPUR VIDYUT VITRAN NIGAM LIMITED

Corporate Identification Number (CIN): U40109RJ2000SGC016486 Office of the Superintending Engineer (Regulation) Room No. 149, Old Power House Premises, Banipark, Jaipur-302016

TELEFAX: 0141-2209533, Email – sermdf@ivvnl.org

Website: www.jaipurdiscom.com

DETAILED PROJECT REPORT

INTRODUCTION

Rajasthan is the largest state in the country, in terms of area, spreading across 3,42,239 Sq. km, which is 10.41% of the nation area. The total population of Rajasthan is nearly 8.1 Crores spread across 33 Districts, of which 75% is rural population. The density of population in Rajasthan is 200 per sq.km which is much lower than the national average of 382 per sq.km. The state is, predominantly, an agrarian society with majority (45%) of the population depending on agriculture activities as source of income, which accounts for around 29.5% of Gross State Domestic Product (GSDP).

Due to this spread of population, meeting power demand, distribution of electricity and maintaining quality power for every category of consumers has always remained a challenge. The state is primarily agricultural base; however, the intensive power is too supplied to the domestic, non-domestic and industrial sector. It has been identified that these loads are highly inductive in nature which need rectification. In this regard, JVVNL has proposed to install dynamic/ automatic capacitor bank under which the capacitive load helps to adjust power factor as close to **'Unity Power Factor'**. The implementation of the project/ scheme will limit the heavy drawal of reactive power from grid and mitigate the risk such as **(a) Overloading of transmission lines; (b) Overloading of transformers at different voltage levels; and (c) Increase in system losses.**

Under JVVNL Discom, efforts have continuously been made to provide requisite reactive power compensation; however, the challenge associated with low voltage at the load end and drawl of heavy reactive power from the grid still persists due to fast growing load demand. Additionally, it has been noticed that the power factor is ranging from 0.80 to 0.90 at urban feeder and 0.75 to 0.80 (or even less) at the rural feeders within the respective circles. In view of this, the **provision through submission of detailed project report has been proposed at various circles having 'power factor less than 0.85'**. The report shall consist of brief background of JVVNL Discom, geographical maps, operational profile, objective, beneficiaries, recent initiatives, technology, cost estimates, timeframe, success criteria etc.

OUR PROPOSAL

1. BACKGROUND

1.1. Introduction

Jaipur Vidyut Vitran Nigam Limited (JVVNL) is a public utility company under the Department of Energy, Government of Rajasthan and is holder of the distribution and retail supply business licenses in the State of Rajasthan *(hereafter referred as "DISCOM")*. The Distribution Company came in to existence on 19 July 2000 pursuant to the "Rajasthan Power Sector Reforms Transfer Scheme, 2000" and restructuring undertaken in the State under which the vertically integrated Electricity Board (Rajasthan State Electricity Board) was unbundled and the power generation, transmission and distribution business was segregated to form 05 successor companies viz.

- a) Rajasthan Rajya Vidyut Utpadan Nigam Limited (RVUN) to manage the electricity generation business of erstwhile RSEB.
- b) Rajasthan Rajya Vidyut Prasaran Nigam Limited (RVPN) to manage the electricity transmission and bulk supply business of erstwhile RSEB.
- c) Ajmer Vidyut Vitran Nigam Limited (AVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Ajmer City Circle, Ajmer District Circle, Bhilwara, Nagaur, Jhunjhunu, Sikar, Udaipur, Chittorgarh, Rajsamand, Banswara, Pratapgarh and Dungarpur Circles.
- d) Jaipur Vidyut Vitran Nigam Limited (JVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Alwar, Bharatpur, Jaipur City, Jaipur District, Dausa, Kota, Jhalawar, Sawai Madhopur, Bundi, Baran, Tonk, Karauli and Dholpur Circles.
- e) Jodhpur Vidyut Vitran Nigam Limited (JdVVNL) to manage the electricity distribution and retail supply business of erstwhile RSEB in Sriganganagar, Hanumangarh, Churu, Bikaner District, Bikaner City, Jaisalmer, Jalore, Barmer, Jodhpur City, Jodhpur District, Sirohi, Jalore, and Pali Circles.

1.2. Geographical Map of Rajasthan Discom



Figure 1: ¹Distribution Company Operating in State of Rajasthan

All the 03 Discoms have been established with the principal object of engaging in the business of distribution and supply of uninterrupted and reliable quality electricity in different districts (JVVNL – 12 Nos., AVVNL – 11 Nos. & JdVVNL – 10 Nos.) of Rajasthan. In view of above geographic locations, the proposal will mainly focus on 'Installation of Capacitor Bank at the 11 kV Side of various 33/11 kV sub-stations' under various Circles of Jaipur Discom.

1.3. Operational Profile

The JVVNLDiscom is responsible for operating the distribution assets within the area of Alwar, Baran, Bundi, Bharatpur, Dholpur, Dausa, Jhalawar, Jaipur, Kota, Karauli, Sawai Madhopur and Tonk. Its scope of work and the electricity network (as on Dec 2021) are as presented below.

 $^{^{1} \}textbf{ Source: } https://energy.rajasthan.gov.in/content/raj/energy-department/en/departments/avvnl/knowledge-base/discom-map.html \\$

Sr. No.	Parameters	JVVNL
1	Area of Operation	72,475 Sq. KM
2	Total Population (As per 2011 Census)	256 Lakhs
3	Total Number of Consumers	59.59 Lakhs
4	Total Number of Villages	15,145 Nos.
5	Electrified Villages	14,776 Nos.
6	Circles	13 Nos.
7	33/11 kV Sub-stations	1893 Nos.
8	MVA Capacity of 33/11 kV Power Transformer	13,349 MVA
9	33 kV Line	16,529 KM
10	11 kV Line	1,85,106 KM
11	11 kV Feeders	9,466 Nos.
12	LT Line	1,60,476 KM
13	11/0.4, 6.35/0.24 kV Sub- station	8,23,939 Nos.
14	MVA Capacity of Distribution Transformer	18,636 MVA
15	Load Profile (LV) based on MU	Agriculture & Domestic loads are predominating
16	Load profile (HV) based on MU	Industrial & Non Industrial, Agriculture, Residential and Commercial

Table 1: Operational Profile of JVVNL Discom

Further, in terms of electrical connectivity, the JVVNL Discom is connected to Rajasthan Rajya Vidyut Prasaran Nigam Limited network at 33 kV & 11 kV levels. Also, there are few interconnection points with other Discoms.

1.4. Customers Profile

Discom currently serves about 5,038,760 consumers with a total connected load of around 18,446,237 kW under the LT & HT categories of consumers. Hence, category wise break-up of total number of consumers with connected Load as on March 2022 is stated below:

Category (LT)	Consumers (Nos)	Connected Load (kW)
Domestic	3,908,907	6,218,679
Non Domestic	452,080	2,506,429
PSL	7,201	88,901
Agri (M)	565,812	4,536,199
Agri (F)	12,264	112,833
SIP	50,115	393,001
MIP	14,050	761,591
LIP	5,026	3,463,076
PWW (S)	17,737	108,974
PWW (M)	418	20,269
PWW (L)	211	108,406
Mixed Load	4,900	127,185
EV	39	694
Total	50,38,760	1,84,46,237

Table 2: Customer Profile for LT & HT Consumers of JVVNL Discom

2. PROJECT OBJECTIVE

JVVNL believes that there is a need for a consistent and long lasting solution in order to improve & strength the Power Distribution Network with minimum losses in the long run. Also, the distribution system has suffered various challenges such as (a) Unbalanced Load Flow; (b) High Level of Technical Losses; (c) Less System Stability; (d) Poor Voltage Regulation; (e) Low Power Factor; (f) Low Consumer Satisfaction Level etc. which need to be gradually resolve. In this regard, JVVNL Discom is taking up Integrated Planning for Distribution System covering the Renovation & Modernization of the overall network. This will enable relieving congestion and improving the voltage profile at the load end.

"Government of India has finalized the scheme/guidelines for operationalization of PSDF dated 10.01.2014. The provision consists of 'Installation of Shunt Capacitors, Series Compensators and other Reactive Energy Generators including Reactive Energy Absorption, Dynamic Reactive' support etc. for improvement of voltage profile in the Grid".

Hence, this report aims to provide detailed information relating to the project for which Power System Development Fund for current year sought by the JVVNL. The key activity have been identified is to improve power distribution system with the installation of **1980 kVAr & 3174 kVAr Dynamic/ Automatic Capacitor Bank** at the selected 11 kV Side of 33/11 kV Sub-stations within the respective Circle/ Division/ Sub-division which could be possible with the **Power System Development Fund (PSDF)**.

	Installati	on of Dyna	mic/Auto	matic Capacito	or Bank und	er 12 Circles of JVVN	NL Discom
Power Factor	Circle	Division	Sub Division	Total 33/11 kV Substation	Feeder Count	Proposed Transformer Capacity (MVA)	Power Transformer Count (Nos.)
Less						3.15/5	563
than 0.85	12	46	151	572	2,587	8	14
		-	•			Total (In Nos.)	577

Table 3: Project Estimation for Installation of Capacitor Bank under JVVNL Discom

3. SINGLE LINE DIAGRAM FOR INSTALLATION OF APFC AT VARIOUS 33/11 KV SUB-STATIONS

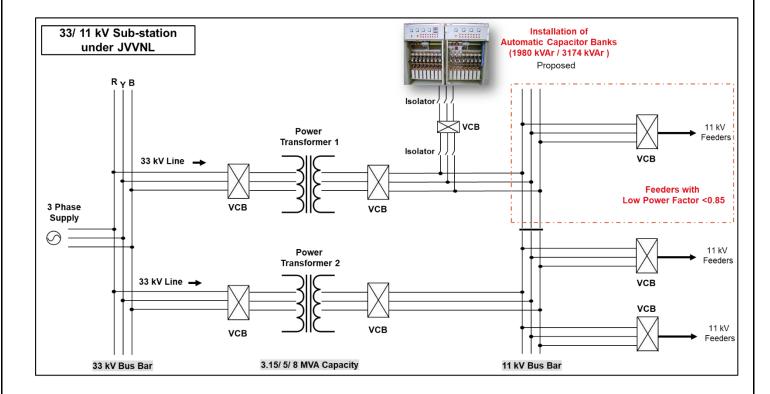


Figure 2: Single Line Diagram – Installation of Dynamic/Automatic Capacitor Bank

Page **7** of **27**

4. PROPOSED SCHEMATIC DIAGRAM FOR APFC PANEL ON 3.15, 5 AND 8 MVA TRANSFORMER AT 33/11 KV SUBSTATIONS

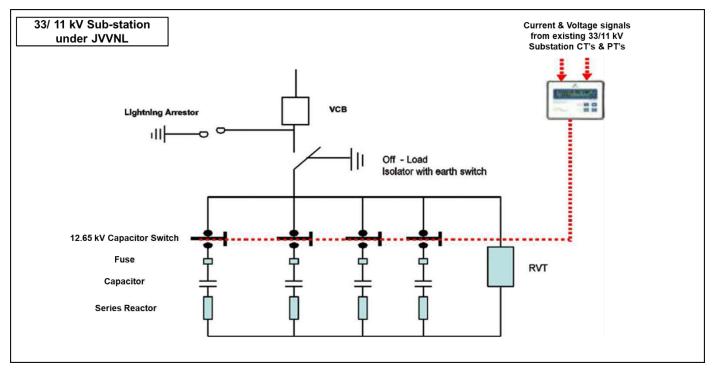


Figure 3: Proposed Schematic Diagram – APFC Panel

5. METHODOLOGY ADOPTED

The methodology as followed by JVVNL, for identification of low power factor (*i.e. below* 0.85) are as stated below.

- a) JVVNL Discom has developed a Feeder Monitoring System (FdrMS) in order to have a 'Real Time' power supply status of 11 kV feeders including installation status, power quality, system reliability, issue tracker, block hours supply, power factors, loan analysis, energy audit, tamper details etc.
- **b)** With the support of FdrMS, the review reports consisting of 'Power Factors Less than 0.90' has been downloaded for the last 01 year (*i.e. from May 2021 till April 2022*).
- c) Analysis were carried-out on the Power Factor, Maximum Current (In Amp.) & Peak Load (In kW) at the various zone, circle, division, sub-division, 33/11 kV substations, 11 kV feeders including its transformational capacity (In MVA).

- **d)** The average power factor for the 12 months were calculated and finalized for 12 circles (except Jaipur, as maximum number of 11 kV feeders are having power factor >0.85) which is enclosed under **Annexure 'I'**.
- e) Further, the automatically generated data are reliable enough for consideration however, JVVNL has taken initiative and finalized data were cross-checked on a sample basis at the various division/ sub-divisions levels.

6. VOLTAGE PROFILE

In addition to the above study, as most of the identified feeders are under rural category having block hours power supply, JVVNL analyzed phase voltage under average load and peak load conditions. In Rajasthan, 11 kV feeders are not segregated from agricultural loads, hence 3-phase supply are provided during peak/ block hours where the phase voltage lies less than 0.9 pu. However, during the non-block hours, the entire loads are shifted to 1-phase supply leading to further voltage drop below 0.9 pu at various 11 kV feeders. In this regard, analysis were carried-out between 10:00 AM – 03:00 PM (peak/ block hour) under three phase (R-Y-B) supply where the voltage at the substations were found to be below 0.9 pu (i.e. below 5.7 kV phase or 9.9 kV line voltage). Hence, the phase voltage profile for some of the feeders on sample basis are as presented below. Also, detailed voltage analysis are included in attached annexure of revised detailed project report.

(a) Feeder – Haripura (Rural) under 33/11 kV Digod Sub-station

(b) Feeder – Dindhor (Rural) under 33/11 kV Tasing Sub-station

e der Detaille	Analysia Lor	diek =	And a state of the	Eren	Londfrollin	Delly	Graphs +		
Feather Same	Custor 8	and an Type -	-	Area (Bulletine (Galimeters	
Instants	Data								
Instants Place	Data			Comm	Ghrani		Pass	(Factor	
Plant	and the second sec			Conten	GArani		Pass	e Factor	
Press	VenagedRVD		-		(Aren)			e Factor	

(c) Feeder – Petrol (Rural) under 33/11 kV Railganv Sub-station

derDetails	Analysis	LegBeck +	Instants.	Events	LeadProble	Delty	Graphs +	
Peeder Name		Parallel Type :	Mires!	Ann		destation (Subjects		Get Instants
	Data	ev .		Current	(Arran)		From	Factor
Instants Mare		944 C		Carrow 30.8	ŞAmpaj		Powe	Factor
Phase	Voltage	ew 1		2007.0	(Anya)		10.000	Factor

(d) Feeder – Manoharpura (Rural) under 33/11 kV Kashipur Sub-station

derOvtails	Analysis LogBook -	Events Load	Profile Doily	Orapits +
Passier II.	en : Fender Tape I fan Ten	et Anne 14	Bulaister : 111	
Instants				
nstants Naie		CarrieredAmpa	i	Power Factor
Tuese		CarringArga 12.4	Ê	Power Packer
	Data	in Standard In	i.	Conservation of the local distance of the lo

(e) Feeder – Ukhlana (Rural) under 33/11 kV Aligarh Sub-station

ederDetails	Analysis	LegBook •	And and a	Events	LoseProfile	Deily	Graphs +	
Feeder Name	University	Feeder Type :	Rosal	Ansil	- 0	utstation : Ligar	E.	Germatern
Instants	Data	_						
Instants Max	Data	en l		Carrow	(Logal		Pow	ve Factor
	-	KA .		Carros	(Angel)		Pow	er Factor
Phase	Voltage(κη.		1 1 1 1 1 1 1	(inpl)			

(f) Feeder – Chogai (Rural) under 33/11 kV Ranoli (Tonk) Sub-station

	osin'in sin	Sector sector	-	1 Contractor					
ederDetails	Analysis	LogBook -	and the second	Events	LoadProfile	Deily	Greptes +		
Feeder Marre 1		Feeder Type :	R.4	Area 1		But station (Days)		Getlestents	
Instants		_							
Phase	Data Velage	ein		Current	(Leps)		Prov	er Faitur	
Pluse R		(V)		Current 8.12	(Leges)		D.57		
Phase	Vallage	(47)		- PERMIT	(Leges)				

7. BENEFICIARIES

Adequate reactive power compensation offered salient benefits to the power system which includes voltage regulation (*i.e. voltage control within acceptable limits*), system power losses reduction brought about by power factor improvement and it increases the utilization of connected equipments at the consumer end, improves reliability of transmission system and more importantly efficiency of real power made available at the consumer end. Hence, the major beneficiaries are as stated below.

- a) Rajasthan Rajya Vidyut Prasaran Nigam Limited
- **b)** Jaipur Vidyut Vitran Nigam Limited (*Approx. 20 Lakhs Consumers under 572 Nos.* 33/11 kV Sub-stations of 12 Circles)

8. ON-GOING INITIATIVES

JVVNL is taking active participation for the supply of quality power without compromising the technical and commercial losses in the urban and rural areas. Some of the initiatives includes village electrification, augmentation of transformational capacity, infrastructure development, privatizations through distribution franchisee, meterization, theft control, adopting schemes like Revamped Distribution Sector Scheme (RDSS), PM-KUSUM Scheme etc. Further, for the improvement of power factors at load end, JVVNL has installed approx. 5,62,323 Nos. of LT Shunt Capacitors (3 kVAr - 6 kVAr - 9 kVAr) from 2016-17 onwards. However due to smaller impact of power factor improvement, burning/ failure issue and theft of LT Shunt Capacitors have forced Discom to rethink and initiate the implementation of dynamic/ automatic capacitor bank at the various 11 kV side of the 33/11 kV sub-stations.

Apart from above, majority of the 11kV feeders in JVVNL are having high agriculture load which are being catered using 3.15/ 5 MVA power transformers at substations. **Over the decade, Discom has witnessed a growth of around ~9% in connected load thus leading to increase in power demand.** Also, Government of Rajasthan has mandated supply of day-time power (two blocks supply) to agricultural farmers. To meet this increase in demand and ensure day time supply to agriculture consumers, JVVNL need to augment its existing transformation capacities at Substation level (specifically from 3.15 MVA to 5 MVA) within next 2 years. Hence, under this detailed project report, JVVNL has considered the upcoming requirement and proposed a capacitor bank with common rated capacity for 3.15/ 5 MVA.

9. TECHNOLOGY

- a) For 11 kV, 1980 kVAr & 3174 kVAr Dynamic/ Automatic Capacitor Bank shall include 11 kV Vacuum Circuit Breaker (VCB) Switchgear with complete arrangement with Adopter Panel for connection with existing 11 kV Bus Bar, Capacitor Switch, Reactor, APFC, Indoor Type Automatic Control Unit, Lightning Arrestor, Surge Arrestor, Pin & Post Insulators, PT's-CT's, Power & Control Cables, Junction Box, Supports of various types channels, Nut Bolts, Bus Bar Structure, Laying of Cables, Installation of Energy Meters, Interconnection of VCB and C&R Panel, Battery with Batter Charger etc.
- **b)** The capacitor bank shall consist of variable steps of different kVAr (*details shared under BoQ*). All the capacitor unit shall be controlled through separate capacitor

switch and complete capacitor bank shall be protected through a VCB suitable for capacitor duty.

- c) The rated voltage of the system will be not less than 12 kV and shall be carriedout under 3-Phase Power Supply; 50 Hz frequency level.
- **d)** The automatic power factor control unit shall continuously monitor power factor at 11 kV side of power transformer and automatically switched ON/OFF capacitors units in steps according to the requirement of KVAr to maintain the Target Power Factor (*atleast 0.98*).
- e) The automatic power factor control unit shall be programmable and have data downloading facility. Data Storage capacity of the control unit shall be at least for 45 days with every 15 minutes data. The bidder shall have to provide two data downloading instrument for data download from control unit with necessary BCS in each Circles.
- **f)** The all display meters provided in the control panel shall be digital meters and shall be compatible for Automatic Meter Reading (AMR).
- **g)** There are no low voltage limit for tripping of capacitor bank main VCB or capacitor switch. Also, the power factor control unit and relays provided for the protection of control unit shall be capable to store at least last 05 faults.
- **h)** All equipment and material shall be designed, manufactured and tested in accordance with the latest applicable IS/ IEC standards.
- i) The electrical installation shall meet the requirement of Indian Electricity Rules-1956/CEA safety Regulation 2010 as amended up to date; relevant IS code of practice and Indian Electricity Act-2003 in addition other rules and regulations as applicable to the work shall be followed.

10. TECHNICAL SPECIFICATION OF AUTOMATIC POWER FACTOR CAPACITOR

The technical specifications for the proposed capacitor bank are as presented below:

a) Switching Arrangement: The automatic control unit shall be mounted in the control & relay panel itself to continuously monitor total load kVAr on 11 kV side of power transformer and shall automatically switch ON or switch OFF (variable steps) through VCB operation.

- **b) Time Delay:** The switching ON operation will take place after period of 10 minutes while switching OFF operation of relevant steps will be instantaneous.
- c) Controls: The unit shall instantly switch OFF the capacitor bank when the voltage increase by 10% above the rated voltage of 11 kV etc.
- **d) Monitoring Facility:** A suitable display should be provided to indicate the capacitor current in each phases of the complete capacitor bank. Indications shall also be provided to indicate ON & OFF status of each capacitor bank. Along with audio alarm indicating tripping of capacitor bank and ON /OFF, visual display window be provided on control panel.
- e) Temperature Variation: The control equipment and associate circuitry shall be suitable for operation at an ambient temperature in the range of + 5 deg C to (+) 50 deg C.

Note: The above proposed technology including technical specifications are indicative only, detailed version will be a part of tender documents.

11. MANAGEMENT ARRANGEMENTS

The implementation plan for the project will be **24 months (i.e., 03 months tendering process + 21 months implementation)** from the date of approval from funding agency and shall be executed as per proposed plan. Further, the works under different activities shall be carried out on **turnkey basis** through international or national competitive bidding as per the guidelines of funding agency.

The project shall cover the overall procurement, installation, commissioning, testing and 05 years maintenance of dynamic/ automatic capacitor bank and will be divided into two phases (I & II) depending upon the total number of sub-station considered, area covered, time frame and available fund. Here, providing the estimate for **'Phase – I'**.

12. COST ESTIMATES

The cost estimation of installation of **577 Nos. of Dynamic/ Automatic 11 kV Capacitor Bank** under Power System Development Fund is stated below.

Sr. No.	Name of Work	Unit	Qty.	Unit Rate (Rs. Lakhs)	*Amount (In Rs. Cr.)
1	Installation of 1980 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning and testing. (For 3.15/5 MVA)	Nos.	563	31.24	175.90
2	Installation of 3174 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning and testing. (For 8 MVA)	Nos.	14	32.67	4.57

***Note:** The above estimated cost is inclusive of Transportation on material, Erection cost on material, Insurance, Labour & Finance Cost, Service Cost, Price Escalation on cost of material, Civil Cost, applicable GST and other taxes.

13. BILL OF QUANTITY (BOQ)

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost
1	2	3	4	5	6	7
1	12.65 kV, 1980 kVAr, 3-Phase, 50 Hz, Outdoor Type CRCA Panel, Capacitor Bank having variable steps of 792 kVAr + 792 kVAr + 396 kVAr. Bank shall be complete with Capacitor units of 132 kVAr for 396 kVAr & 264 kVAr for 792 kVAr step at 7.3 kV, including allied material such as suitable size of aluminum busbars epoxy insulators, HRC fuses, vacuum contactor, series reactors, RVT, etc. with details as under	Nos.	1	1,180,000.00	1,180,000.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL) - On Pro rata Basis - – Enclosed under Annexure 'II'

(A) Cost break-up of 11 kV Switched Capacitor Bank at 3.15 / 5 MVA Power Transformer

a)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 792 kVAr	Nos.	6			
b)	11 kV, 0.2%, Aluminium Wound, Drytype Series reactors suitable for 396 kVAr	Nos.	3			
c)	11 kV, 3-Phase dry type RVT	No.	1			
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	3			
e)	Surge Suppressor	No.	1			
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1			
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1			
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL) - – Enclosed under Annexure 'III'
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)

Detailed Project Report

17	Applicable GST	-	18%	-	438,418.34	
	Total (C) = (A) + (B)			2,435,657.46	
	Sub-Total				471,417.57	
16	Service Cost	LS	12%	-	235,708.79	(MSEDCL)
15	Insurance, Labour & Finance Cost	LS	3%	-	58,927.20	Maharashtra Discom
14	Erection cost on material	LS	5%	-	98,211.99	Scheme under
13	Transportation on material	LS	4%	-	78,569.60	PSDF Approved
	Sub-Total		/		1,964,239.89	
						(Approved PSDF Scheme of PVVNL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021
11	11 kV CT 400 - 200/5 A Outdoor Type	Nos.	3	10,611.00	31,833.00	Maharashtra Discom (MSEDCL)
10	**Control cables of various sizes	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	Issue Rate dated 20.05.2022 - – Enclosed under Annexure 'IV'
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Indoor termination kit)	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as per Standard
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular
	Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing Cl Pipe Dia 150 mm, Dog Conductor					Scheme under Maharashtra Discom (MSEDCL)
5	*Cable Support Structure,	LS	1	61,506.95	61,506.95	PSDF Approved

Detailed Project Report

18	Price Escalation on cost of material	-	10%	-	196,423.99	PSDF Approved Scheme under
19	***Civil Cost	LS	1	53,857.50	53,857.50	Maharashtra Discom (MSEDCL)
	Sub-Total	688,699.83				
	Grand Total (E) =	3,124,357.30				

Note: As JVVNL is not under practice of regular installation of APFC, hence the cost estimation has been considered from recently approved PSDF Scheme of PVVNL & MSEDCL. Also, considered JVVNL 'Standard Issue Rate' dated 20.05.2022 for some of the items.

Additionally, the cost towards annual maintenance charges (as shown below) shall be borne by JVVNL as internal/ external source of funding.

Annua	Annual Maintenance Charges after Guarantee Period for 05 Years (1 Year + 5 Year's)							
Sr. No.	Parameters	Amount (In Rs.)						
1	2	3	4	5	6			
1	1st Year	Job	1	50000.00	50,000.00			
2	2nd Year	Job	1	60000.00	60,000.00			
3	3rd Year	Job	1	70000.00	70,000.00			
4	4th Year	Job	1	80000.00	80,000.00			
5	5th Year	Job	1	90000.00	90,000.00			
	Total 350,000.00							
	Total AMC Cost for 05 Years considering 563 Nos. of APFC							

Item Wise Cost Breakup:

(A.1) *Cost Structure for 11 kV Station Capacitor Bank – For 1980 kVAr

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)				
1	2	3	4	5	6				
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00				
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00				
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00				
4	Cable Support Structure (2 Nos.)	Kg	200	51.80	10,360.00				
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75				
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00				
7	Dog Conductor	Mtr.	60	51.82	3,109.20				
	Total								

Detailed Project Report

(A.2) ** Cost Structure for Control	Cables – For 1980 kVAr
-------------------------------------	------------------------

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60
	Total				43,818.20

(A.3) *** Cost Structure for Civil Work – For 1980 kVAr

Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	Excavation	CuM	8	150.00	1,200.00
2	PCC	CuM	2.5	4257.00	10,642.50
3	RCC	CuM	5	5255.00	26,275.00
4	Steel	Kg	300	51.80	15,540.00
5	Back Filing	CuM	2	100.00	200.00
	Total		•		53,857.50

(B) Cost break-up of 11 kV Switched Capacitor Bank at 8 MVA Power Transformers

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost
1	2	3	4	5	6	7
1	12.65 kV, 3174 kVAr, 3-Phase, 50 Hz, Outdoor Type, CRCA panel having 4 step as 396.75 kVAr + 396.75 kVAr +1190.25 kVAr +1190.25 kVAr at 12.65 KV. Bank shall be complete with Capacitor units of 132.25 kVAr for 396.75 kVAr & 396.75 kVAr for 1190.25 kVAr at 7.3 kV including allied material such as suitable size of Aluminum busbars epoxy insulators, HRC fuses, Vacuum contactor, series reactors, RVT, etc. with details as under	Nos.	1	1,271,186.00	1,271,186.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL) - – Enclosed under Annexure 'II'
a)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 396.75 kVAr	Nos.	6			
b)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 1190.25 kVAr	Nos.	6			
c)	11 kV, 3-Phase dry type RVT	No.	1			
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	4			
e)	Surge Suppressor	No.	1			
f)	IP 55, Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1			
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1			

Detailed Project Report

2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL) - – Enclosed under Annexure 'III'
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
5	*Cable Support Structure, Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing Cl Pipe Dia 150 mm, Dog Conductor	LS	1	61,506.95	61,506.95	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Indoor termination kit)	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as per Standard
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	Issue Rate dated 20.05.2022 - – Enclosed under Annexure 'IV'
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF

Detailed Project Report

						Scheme of PVVNL)
10	**Control cables of various sizes	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under
11	11 kV CT 400 - 200/5 A Outdoor Type	Nos.	3	10,611.00	31,833.00	Maharashtra Discom (MSEDCL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20- 21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
	Sub-Total	(A)			2,055,425.89	
13	Transportation on material	LS	4%	-	82,217.04	PSDF Approved
14	Erection cost on material	LS	5%	-	102,771.29	Scheme under
15	Insurance, Labour & Finance Cost	LS	3%	-	61,662.78	Maharashtra Discom
16	Service Cost	LS	12%	-	246,651.11	(MSEDCL)
	Sub-Total	(B)			493,302.21	
	Total (C) = (A)) + (B)			2,548,728.10	
17	Applicable GST	-	18%	-	458,771.06	PSDF Approved
18	Price Escalation on cost of material	-	10%	-	205,542.59	Scheme under Maharashtra
19	***Civil Cost	LS	1	53,857.50	53,857.50	Discom (MSEDCL)
	Sub-Total	(D)			718,171.15	
	Grand Total (E) =	3,266,899.25				

Note: As JVVNL is not under practice of regular installation of APFC, hence the cost estimation has been considered from recently approved PSDF Scheme of PVVNL & MSEDCL. Also, considered JVVNL 'Standard Issue Rate' dated 20.05.2022 for some of the items.

Additionally, the cost towards annual maintenance charges (as shown below) shall be borne by JVVNL as internal/ external source of funding.

Annual Maintenance Charges after Guarantee Period for 05 Years (1 Year + 5 Year's)										
Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)					
1	2	3	4	5	6					

Detailed Project Report

1	1st Year	Job	1	50000.00	50,000.00
2	2nd Year	Job	1	60000.00	60,000.00
3	3rd Year	Job	1	70000.00	70,000.00
4	4th Year	Job	1	80000.00	80,000.00
5	5th Year	1	90000.00	90,000.00	
	350,000.00				
	4,900,000.00				

Item Wise Cost Breakup:

(B.1) *Cost Structure for 11 kV Station Capacitor Bank – For 3174 kVAr

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)				
1	2	3	4	5	6				
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00				
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00				
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00				
4	Cable Support Structure (2 Nos.)	Kg	200	51.80	10,360.00				
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75				
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00				
7	Dog Conductor	Mtr.	60	51.82	3,109.20				
	Total								

(B.2) **Cost Structure for Control Cables – For 3174 kVAr

Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4	5	6
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60
	43,818.20				

(B.3) ***Cost Structure for Civil Work – For 3174 kVAr

Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)	
---------	------------	------	------	------------	--------------------	--

Detailed Project Report

1	2	3	4	5	6
1	Excavation	CuM	8	150.00	1,200.00
2	PCC	CuM	2.5	4257.00	10,642.50
3	RCC	CuM	5	5255.00	26,275.00
4	Steel	Kg	300	51.80	15,540.00
5	Back Filing	CuM	2	100.00	200.00
	53,857.50				

14. TIME FRAME PERT CHART

The total duration of the project is considered as **24 months**. The tentative start date shall be considered as the date of receipt of approval from PSDF funding while the completion time is likely to by **end of September 2024.** The detailed time frame is presented below.

	-				TIMELINE																				
i		FY 2022-23							FY 2023-24								FY 2024-25								
Sr. No	Description	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24
Fin	alization of Tender Documents & Issuance of Work Order																								
1	Project Approval																								
2	Conduct of Committee Meeting																								
3	Preparation & Release of Tender Document																								
4	Evaluation, Contract Award and Mobilization																								
Pro	curement, Installation, Commissioning & Testing of Equipments																								
5	1st Disbursement (30% of Grant)				D1																				
6	Procurement, Installation, Commissioning & Testing of Equipments											Р	rogr	essi	ve Ba	asis									
7	Bi-monthly Review Meeting																								
8	Monthly Report Submission																								
9	2nd Disbursement (60% of Grant) i.e. After Utalization of 30% Grant +										D2														
5	10% Self-contribution (JVVNL)										02														
Cos	t Benefit Analysis & Report Submission on Improved Power Factor																								
10	Submission of Draft Report																								
11	Final Report Submission																								
12	3rd Disbursement (10% of Grant) i.e. On Completion of Scheme																								D3

15. SUCCESS CRITERIA & SUSTAINABILITY

To identify the success of any project, it is always necessary to evaluate the standards by which to examine whether the proposed objective, target or outcomes will be achieve or not. Hence, the **Cost-Benefit Analysis** for the 1980 kVAr & 3174 kVAr ratings automatic capacitor bank on the 3.15, 5 & 8 MVA power transformer has been presented below.

Detailed Project Report

Approx. 13 Months

Jaipur Vidyut Vitran Nigam Limited

Payback Period

	Payback Calculation for Installation of 11 kV Automatic Capacitor Bank at 33/11 kV Sub-station														
	Assumptions - Load Factor - 80% Avg. Loading - 54% Average PF - 0.85 Desired PF - 0.98 Initial Line Losses as 20%														
Sr. No.	Transformer Rating (In MVA)	Qty	Total MVA	Factor	Average Loading	Average Demand (In MW) with 0.85 Power Factor	Reduction in MVA after Capacitors Bank	% Line	of Initial	Total MWh Drawn in a Year	Saving in MWh	Cost of energy saved per annum @ 4.85/- (2022- 21) per unit	Proposed 11 KV Automatic Capacitor Bank (In kVAr)	Supply, Installation Cost (In Lakhs)	Total Cost (In Cr.)
				80%	54%		0.98		20						
1	3.15	346	1090	872	471	400.2113	408.38	24.77	4.95	3505851	173686	842,378,854	1980	31.24	108.10
2	5	217	1085	868	469	398.412	406.54	24.77	4.95	3490089	172905	838,591,666	1980	31.24	67.80
3	8	14	112	90	48	41.1264	41.97	24.77	4.95	360267	17848	86,564,301	3174	32.67	4.57
	Grand Total									7356207	364440	1,767,534,820	-	-	180.47

Total Cost of the Project	:	Rs. 180.47 Cr.
Total Savings with Power Factor Improvement	:	Rs. 176.75 Cr.

"Further, regional entities are liable for weekly settlement of 'Reactive Energy Charges' in accordance with the CERC (Indian Electricity Grid Code) Regulations, 2010 and amendments thereof, which are sometimes payable or receivable. Due to poor power factor, sometimes Rajasthan accounts for a penalty at the rate of 10 paise/kVArh (*from 03.05.2010 onwards*) reactive charges with escalation factor of 0.5 paise/ kVArh. Also, recent provision of CERC's Draft Indian Electricity Grid Code 2022 recommends the reactive charge at the rate of 5 paise/kVArh w.e.f. the date of effect of final regulations with escalation at 0.5paise/kVArh per year thereafter".

Hence, the draft provision to rate reduction along with saving achieved through installation of capacitor bank will definitely lower down the overall penalty impact. These shall be the contributing factor for the Improvement of Financial Health of Discoms and will leading to a sustainable implementation structure. (*Note: The NRLDC charges is not taken into consideration in above payback calculation*).

Moreover, the capacitor units are used in these capacitor banks are manufactured with the latest design and tested to meet or exceed the requirement of applicable IEC & IS Standards, it is rated in continuous kVAr, voltage and frequency for operating within the -200 °C to +500 °C ambient temperature rage & designed to produce not less than rated kVA at rated voltage and frequency.

Capacitors will operate safely at 135% of kVAr rating under following condition as:

• kVAr caused by excess at rated frequency.

- kVAr added by the harmonic voltage superimposed on the power frequency voltage.
- kVAr attributable to manufacturing tolerances.

The maximum recommended working voltage of capacitor is 110% of rated voltage. The capacitors include a safely factor that permits them to tolerate without damage momentary over voltage caused due to switching/ load fluctuation.

Thus, it is quite successful and sustainable in the high voltage system.

Detailed Project Report

ANNEXURE 'I'

List of Various 33/11 kV Sub-stations considered for Power Factor Improvement

Page 27 of 27

	Cost Estimation for JVVNL, Rajasthan										
Sr. No.	Name of Items	Unit	Qty. (Nos.)	Unit Rates (In Lakhs)	Amount (In Cr.)						
1	Installation of 1980 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning and testing (For 3.15/5 MVA)	Nos.	563	31.24	175.90						
2	Installation of 3174 kVAr Automatic 11 kV Capacitor Bank including procurement, installation, commissioning and testing (For 8 MVA)	Nos.	14	32.67	4.57						
	Total		577		180.47						

Contribution		
Grant under PSDF Scheme	90%	162.43
JVVNL Internal / External Source	10%	18.05

	BoQ for 11 kV Dynamic/ Automatic Capacitor Bank (APFC) for Rural Areas - JVVNL										
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost					
1	2	3	4	5	6	7					
1	12.65 kV, 1980 kVAr, 3-Phase, 50 Hz, Outdoor Type CRCA Panel, Capacitor Bank having variable steps of 792 kVAr + 792 kVAr + 396 kVAr. Bank shall be complete with Capacitor units of 132 kVAr for 396 kVAr & 264 kVAr for 792 kVAr step at 7.3 kV, including allied material such as suitable size of aluminum busbars epoxy insulators, HRC fuses, vacuum contactor, series reactors, RVT, etc with details as under	Nos.	1	1,180,000.00	1 180 000 00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL) -					
a)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 792 kVAr	Nos.	6	1,100,000.00	1,100,000.00	On Pro rata Basis					
b)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 396 kVAr	Nos.	3								
c)	11 kV, 3-Phase dry type RVT	No.	1								
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	3								
e)	Surge Suppressor	No.	1								
f)	IP 55 , Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1								
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1								
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)					
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)					

4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
5	*Cable Support Structure, Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing Cl Pipe Dia 150 mm, Dog Conductor	LS	1	61,506.95	61,506.95	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Indoor termination kit)	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as per Standard Issue Rate dated
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	20.05.2022
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
10	**Control cables of various sizes	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under
11	11 kV CT 400 - 200/5 A Outdoor Type	Nos.	3	10,611.00	31,833.00	Maharashtra Discom (MSEDCL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
	Sub-Total (A)				1,964,239.89	-
13	Transportation on material	LS	4%	-	78,569.60	
14	Erection cost on material	LS	5%	-	98,211.99	PSDF Approved Scheme under
15	Insurance, Labour & Finance Cost	LS	3%	-	58,927.20	Maharashtra Discom (MSEDCL)
16	Service Cost	LS	12%	-	235,708.79	
	Sub-Total (B)				471,417.57	-
	Total (C) = (A) + (B)				2,435,657.46	-

17	Applicable GST	-	18%	-	438,418.34	
18	Price Escalation on cost of material	-	10%	-	196,423.99	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
19	***Civil Cost	LS	1	53,857.50	53,857.50	
	Sub-Total (D)	688,699.83	-			
	Grand Total (E) = (C) + (D)					-

	*Cost Structure for 11 kV Station Capacitor Bank - JVVNL								
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)				
1	2	3	4		5				
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00				
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00				
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00				
4	Cable Support Structure (2 Nos.)	Kg	200	51.80	10,360.00				
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75				
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00				
7	Dog Conductor	Mtr.	60	51.82	3,109.20				
	Total								

	**Cost Structure for Control Cables								
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)				
1	2	3	4		5				
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00				
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00				
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60				
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60				
	Total								

	***Cost Structure for Civil Work									
Sr. No. Parameters Unit Qty. Unit Rates Amount (In										
1	2	3	4		5					

1	Excavation	CuM	8	150.00	1,200.00	
2	PCC	CuM	2.5	4257.00	10,642.50	
3	RCC	CuM	5	5255.00	26,275.00	
4	Steel	Kg	300	51.80	15,540.00	
5	Back Filing	CuM	2	100.00	200.00	
	Total					

Annua	Annual Maintenance Charges after Guarantee Period for 05 Years (1 Year + 5 Year's) - Shall be borne by JVVNL							
Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)			
1	2	3	4		5			
1	1st Year	Job	1	50000.00	50,000.00			
2	2nd Year	Job	1	60000.00	60,000.00			
3	3rd Year	Job	1	70000.00	70,000.00			
4	4th Year	Job	1	80000.00	80,000.00			
5	5th Year	Job	1	90000.00	90,000.00			
	Total							
	Total AMC Cost after considering 563 Nos. APFC							

	BoQ for 11 kV Dynamic/ Automatic Capacitor Bank (APFC) for Rural Areas - JVVNL														
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	Reference for Unit Cost									
1	2	3	4		5	7									
1	12.65 kV, 3174 kVAr, 3-Phase, 50 Hz, Outdoor Type, CRCA panel having 4 step as 396.75 kVAr + 396.75 kVAr +1190.25 kVAr +1190.25 kVAr at 12.65 KV. Bank shall be complete with Capacitor units of 132.25 kVAr for 396.75 kVAr & 396.75 kVAr for 1190.25 kVAr at 7.3 kV including allied material such as suitable size of Aluminum busbars epoxy insulators, HRC fuses, Vacuum contactor, series reactors, RVT, etc. with details as under	Nos.	1	1,271,186.00											
a)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 396.75 kVAr	Nos.	6		1,271,186.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)									
b)	11 kV, 0.2%, Aluminium Wound, Dry type Series reactors suitable for 1190.25 kVAr	Nos.	6												
c)	11 kV, 3-Phase dry type RVT	No.	1												
d)	11 kV/400 Amp, Indoor type Vacuum contactor	Nos.	4												
e)	Surge Suppressor	No.	1												
f)	IP 55 , Outdoor CRCA cubicle panel for accommodating capacitors, series reactor, vacuum contactor, surge arrestor fuses along with canaopy	Set	1												
g)	C & R Panel with Automatic Control Unit with APFC relay and Neutral Displacement relay	Set	1												
2	11 kV, 400 Amp, Off Load Isolator with earth switch and mounting structure	No.	1	35,000.00	35,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)									
3	11 kV, 400 Amp, Off Load Isolator without earth switch and mounting structure	No.	1	26,630.00	26,630.00	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)									
4	9 kV, 10 kA, Station Class, Lightning Arrestors	Nos.	3	3,400.00	10,200.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)									

5	*Cable Support Structure, Clamps, Connectors, Earthing MS Flats 50 x 6, 3 Mtr long Earthing Cl Pipe Dia 150 mm, Dog Conductor	LS	1	61,506.95	61,506.95	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
6	11 kV XLPE insulated 3x185 mm ² Armoured	Mtr.	50	1,251.37	62,568.50	Items are under regular
7	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Indoor termination kit)	No.	2	823.77	1,647.54	purchase by JVVNL. Rates as per Standard Issue Rate dated
8	Heat Shrinkable Jointing kit for 11 kV 3x185 Sq. mm. XLPE Cable (Outdoor termination kit)	No.	2	1,017.85	2,035.70	20.05.2022
9	11 kV VCB (Kiosks) Switchgear with complete arrangement with adopter panel for connection with existing 11 kV bus bar	No.	1	440,000.00	440,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
10	**Control cables of various sizes	LS	1	43,818.20	43,818.20	PSDF Approved Scheme under
11	11 kV CT 400 - 200/5 A Outdoor Type	Nos.	3	10,611.00	31,833.00	Maharashtra Discom (MSEDCL)
12	24 Volt / 200 AH Battery with Battery Charger (For Capacitor's VCB)	Nos.	1	69,000.00	69,000.00	As per LOI No. 130/PVVNL- MT/MM/23/20-21/LOI Dated 07.04.2021 (Approved PSDF Scheme of PVVNL)
	Sub-Total (A)		-		2,055,425.89	-
13	Transportation on material	LS	4%	-	82,217.04	
14	Erection cost on material	LS	5%	-	102,771.29	PSDF Approved Scheme under
15	Insurance, Labour & Finance Cost	LS	3%	-	61,662.78	Maharashtra Discom (MSEDCL)
16	Service Cost	LS	12%	-	246,651.11	
	Sub-Total (B)				493,302.21	-
	Total (C) = (A) + (B)	2,548,728.10	-			
17	Applicable GST	-	18%	-	458,771.06	
18	Price Escalation on cost of material	-	10%	-	205,542.59	PSDF Approved Scheme under Maharashtra Discom (MSEDCL)
19	***Civil Cost	LS	1	53,857.50	53,857.50	

Sub-Total (D)	718,171.15	-
Grand Total (E) = (C) + (D)	3,266,899.25	-

*Cost Structure for 11 kV Station Capacitor Bank - JVVNL						
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)	
1	2	3	4		5	
1	Structure for 11 KV CT	Kg	155	51.80	8,029.00	
2	Structure for 11 KV LA	Kg	155	51.80	8,029.00	
3	G.I. Nut Bolts	Kg	20	82.90	1,658.00	
4	Cable Support Structure (2 Nos)	Kg	200	51.80	10,360.00	
5	MS Flat 50 X 6	Kg	235.5	48.50	11,421.75	
6	Earthing CI Pipe Dia 150 mm 3 Mtr long	Nos.	3	6300.00	18,900.00	
7	Dog Conductor	Mtr.	60	51.82	3,109.20	
Total					61,506.95	

**Cost Structure for Control Cables					
Sr. No.	Name of Items	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4		5
1	2C X 2.5 Sq. mm Armoured, Copper	Mtr.	100	55.11	5,511.00
2	4C X 2.5 Sq. mm Armoured, Copper	Mtr.	275	87.60	24,090.00
3	7C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	139.19	5,567.60
4	10C X 2.5 Sq. mm Armoured, Copper	Mtr.	40	216.24	8,649.60
Total				43,818.20	

	***Cost Structure for Civil Work						
Sr. No.	Parameters	Amount (In Rs.)					
1	2	3	4		5		
1	Excavation	CuM	8	150.00	1,200.00		
2	PCC	CuM	2.5	4257.00	10,642.50		
3	RCC	CuM	5	5255.00	26,275.00		
4	Steel	Kg	300	51.80	15,540.00		
5	Back Filing	CuM	2	100.00	200.00		
Total					53,857.50		

Annual Maintenance Charges after Guarantee Period for 05 Years (1 Year + 5 Year's) - Shall be borne by JVVNL					
Sr. No.	Parameters	Unit	Qty.	Unit Rates	Amount (In Rs.)
1	2	3	4		5
1	1st Year	Job	1	50000.00	50,000.00
2	2nd Year	Job	1	60000.00	60,000.00
3	3rd Year	Job	1	70000.00	70,000.00
4	4th Year	Job	1	80000.00	80,000.00
5	5th Year	Job	1	90000.00	90,000.00
Total					350,000.00
Total AMC Cost after considering 14 Nos. APFC					4,900,000.00

Rajasthan Electricity Regulatory Commission Jaipur

Petition No.RERC/tariff/8/2000

filed by

Rajasthan Rajya Vidyut Prasaran Nigam Limited,

Mr. Arun Kumar, Chairman,

Mr. Shanti Prasad, Member,

Mr. Prabhakar K. Das, Member

Date of order: 24th March 2001

<u>ORDER</u>

1 The Secretary (Administration), Rajasthan Rajya Vidyut Prasaran Nigam Limited had submitted a petition before the Commission on 1st December 2000 on behalf of Rajasthan Rajya Vidyut Prasaran Nigam Limited (hereinafter referred to as 'RVPN') under section 26 of the Rajasthan Power Sector Reforms Act 1999, (Act 23 of 1999)(hereinafter referred to as the Reforms Act) for fixation of tariff for bulk supply and transmission of electricity for the years 2000-01 and 2001-02. This application was submitted in pursuance of resolution of Board of Directors dated 25.11.2000.

Rajasthan Electricity Regulatory Commission was established under the 2 provisions of the Electricity Regulatory Commissions Act 1998 (Act 14 of 1998), on 10th December 1999 vide Government of Rajasthan Gazette notification of the same date. The Commission became operational with effect from 2nd January 2000, on appointment of Chairman and a Member. The Commission had notified interalia Rajasthan Electricity Regulatory Commission (Conduct of Business) Rajasthan Electricity Regulatory Commission (Tariff) Regulations 2000, Regulations 2000 (hereinafter referred to as Tariff Regulations) and had issued order No.2 dated 22.4.2000 laying down the methodology, procedure and formats for furnishing information under sub clause (1) of clause 3 and clause 4 of the Tariff Regulations. The Government of Rajasthan promulgated the Rajasthan Power Sector Reforms Act 1999 (Act 23 of 1999) on 10th January 2000 and made it effective on 1st June 2000. The Commission set up under the Electricity Regulatory Commissions Act 1998, became the first Commission under 87 The bulk supply tariff determined by the Commission is based on the projected cost of power purchase by the petitioner after allowing reasonable escalation. There shall be no separate power purchase and fuel cost adjustment charge.

88 In case there is a large variation in the power purchase and fuel cost, the petitioner may take that into account at the time of next tariff filing or propose a power purchase cost adjustment formula for the approval of the Commission.

Rebate for timely payment

89 The Commission has analysed the provisions of tariff for central sector generating/transmission companies, agreements for bulk power supply with NPC, tariff orders for NTPC, NHPC and PGCIL. Considering these & working capital requirements, the Commission directs that <u>1.5% rebate shall be</u> <u>admissible to Discoms for payment of bill by them upto 3rd day of billing, 1%</u> <u>rebate thereafter for payment upto 25th day of billing. After 55 days of billing a</u> <u>late payment surcharge of 1.5% per month shall be chargeable from Discoms.</u>

Power factor levy/incentive

90 Power factor levy/incentive shall be effective after three months. In the meantime duly calibrated electronic meters capable of recording such readings on hourly basis shall be installed at all substations.

Directions to RVPN

The directions given by the Commission in this order are summarised below:

RVPN to be vigilant and ensure that tapping of exclusive supply lines of RVPN is not effected in future by other state/organization. (Para 23)

92 RVPN shall strive for rationalisation of determination of EHV loss in BBMB & Northern Region (NR) so that its impact on purchase from each power station is determinable in advance. (Para 32)

RVPN shall strive for EHV loss within the State to be reduced to the level of 5% in next five years. For the year 2001-02 a reduction of 0.08% be achieved. Steps taken by RVPN for this purpose and reduction in losses achieved should be reported to the Commission on quarterly basis. (Para 35)

94 The RVPN shall control EHV loss within the State as per directions in para
 37. (Para 37)

Vitran Nigam shall maintain minimum power factor of 85%. Requirement of Shunt capacitors for the year be assessed as per NREB studies. 50% of the required capacity shall be installed by RVPN and balance 50% by three Vitran Nigam @ 16.6% capacity. (Para 40)

96 Lagging kVArh draw in excess of 62% of KWh draw, measured at each substation and integrated for Vitran Nigam as a whole, shall attract a penalty of 4 paisa per kVArh with 5% annual escalation with effect from 1.4.2001. Lagging kVArh draw below 32% of KWh drawn shall earn an incentive at the same rate. (Para 40)

97 SLDC shall monitor, on computer, the MVAr draw/injection at power grid/BBMB interconnections at system voltage below 97% and above 103% at respective point. (Para 40)

98 SLDC shall formulate scheme of switching off of excess capacity of shunt capacitors in phases at system voltage from 100% to 103% and switching on of shunt capacitors in phases at system voltage from 100% to 97%. (Para 40)

RVPN and Vitran Nigams shall prepare a comprehensive power cut and load shedding scheme so that no sector suffers at the cost of other and all categories of consumers share the shortage. (Para 52)

100RVPN shall segregate account of generation, transmission & load
despatch.(Para 54)

101 RVPN should report status and review of order after three months of introduction of ABT regime. (Para 56)

102 RVPN shall finalise provisional rate for billing conveyed by Director finance and company affairs, RVPN vide letter dated 29.8.2000. (Para 60)

103RVPN shall enter into power station wise PPA based on GOI guidelines with
RVUN within 3 months of this order.(Para 62)

remain in force until any amendment to the tariff is approved by the Commission. This tariff shall become effective from 1st April 2001.

121. This order is made on March 24, 2001.

-sdsdsd-		
(Prabhakar K. Das)	(Shanti Prasad)	(Arun Kumar)
Member	Member	Chairman

Certified copy

(Prabhat Dayal)

Secretary

Rajasthan Electricity Regulatory Commission

Jaipur

RAJASTHAN ELECTRICITY REGULATORY COMMISSION, JAIPUR NOTIFICATION JAIPUR 24.05. 2008

No. RERC / Secy / Reg - 74 In exercise of the powers conferred under Section 181 read with section 86(1)(h) of the Electricity Act, 2003 (Act 36 of 2003) the Rajasthan Electricity Regulatory Commission after previous publication makes the following regulations namely:

1.0 Short title and applicability

- (i) These regulations shall be called as the "Rajasthan Electricity Regulatory Commission (Rajasthan Electricity Grid Code) Regulations 2008". In short REGC.
- (ii) These regulations shall apply to the Users of 33kV and above, which includes Transmission licensee, Generating Station located in the State including Independent Power Producers, Renewable Energy Power Plants, Generating or/and Transmission Companies connected to State Transmission System, Distribution Companies having HV/EHV consumers directly connected to State Transmission System, Open access customers interconnected to State Transmission System, and Traders.
- (iii) These Regulations supersede Part-1 of the Grid Code; earlier approved by Rajasthan Electricity Regulatory Commission (RERC) and published by Rajasthan Rajya Vidyut Prasaran Nigam Ltd (RVPN). The REGC shall be effective from the date of its publication in the official gazette.
- (iv) These Regulations shall also be applicable to the new Connections and equipments procured/provided for new works/replacements from the date the **REGC** is made effective. The existing Connections and equipments shall continue to operate till such time it is considered necessary. The operational aspects of the **REGC** shall have no such relaxation and shall be applicable with immediate effect.
- (v) The Regulations relating to Grid connectivity, Grid standards & safety standard as specified by the CEA under section 73 of the Act shall generally be complied with in addition to **REGC**.

(vi) These Regulations are covered in 16 Chapters:				
Chapter I	SHORT TITLE AND APPLICABILITY			
Chapter II	GENERAL REQUIREMENT & BACKGROUND.			
Chapter III	DEFINITIONS.			
Chapter IV	MANAGEMENT OF THE GRID CODE.			
Chapter V	SYSTEM PLANNING.			
Chapter VI	CONNECTION CONDITIONS.			
Chapter VII	SYSTEM SECURITY ASPECTS.			
Chapter VIII	OUTAGE PLANNING.			
Chapter IX	OPERATIONAL PLANNING.			
Chapter X	SCHEDULEING, DESPATCH AND ACCOUNTING.			
Chapter XI	FREQUENCY, VOLTAGE AND NETWORK LC	DADING		
	MANAGEMENT.			
Chapter XII	CONTINGENCY PLANNING.			
Chapter XIII	INTER USER BOUNDARY SAFETY.			
Chapter XIV	OPERATIONAL EVENT/INCIDENT AND AC	CCIDENT		
	REPORTING			
Chapter XV	PROTECTION.			

Chapter XVI DATA REGISTRATION.

2.0 General Requirement & Background Chapter-II

The Central Electricity Regulatory Commission (CERC) under the Electricity Act 2003, Section 79(1)(h) has specified the Indian Electricity Grid Code (IEGC). The Electricity Act 2003, Section 86(1)(h) also mandates that the State Electricity Regulatory Commissions shall specify State Grid Code consistent with IEGC. Accordingly **REGC** is introduced.

REGC lays down the rules, guidelines and the standards to be followed by the Users to operate and maintain an efficient and coordinated State Transmission Close co-ordination amongst the **Users**, **SLDC** and the **Transmission Licensee** shall exist at all times for the purposes of effective frequency and voltage management.

The **SLDC** shall monitor the actual **Drawal** against the scheduled **Drawal** and shall regulate the internal generation/demand and maintain the schedule. **SLDC** shall also monitor the reactive power drawal and availability of capacitor bank(s).

The SGS shall follow the despatch instructions issued by SLDC.

The **Discoms** shall primilarly be responsible for managing its load and reactive power **drawal** as per instructions of **SLDC**.

- **11.3** Frequency Management: The nominal system frequency is 50Hz. All possible efforts shall be made to ensure that system frequency shall remain in the band of 49.0Hz to 50.5Hz.
- 11.4 Voltage Management: STU and/or SLDC shall carry out the load flow studies based on operational data from time to time to predict where the voltage problems may be encountered and to identify appropriate measures to ensure that the voltage remain within the prescribed limits. Based an such studies the SLDC shall instruct the SGS to maintain the specified voltage level at interconnecting points. SLDC and STU shall co-ordinate with the Discoms to determine voltage level at the interconnection points.

SLDC shall continuously monitor 400kV, 220kV, 132kV voltage levels at strategic sub-stations and take appropriate measures to control **STS** voltages which may include but not be limited to transformer tap changing, capacitor / reactor switching including capacitor switching by **Discoms** at 33 kV substations, operation of Hydro unit as synchronous condenser and use of MVAr reserves with **SGS** within technical limits as agreed to between **STU** and **SGS**.

RVUN and **IPPs** shall make available the up-to-date capability curves for all **Generating Units** to **SLDC**, as detailed in Chapter-VI, indicating restrictions if any, to allow more accurate system studies and effective operation of the **STS**. The **CPPs** shall furnish the net reactive capability available for Export to/Import from **STS**.

The **Discoms** shall participate in voltage management by providing Local VAR compensation as far as possible, in low voltage system close to load points not depending on **EHV Grid** for reactive support.

11.5 Network Loading Management: The SLDC shall carry out the periodic studies of the intra-state network loading at least once a year to assess the transfer capability of the state as a whole as well as **Discom** wise and post such information on its website. This shall form the basis for approving Short Term OA transaction at the inter state level.

12.0 Chapter -XII CONTINGENCY PLANNING

- **12.1** General: The recovery process is to be followed by all the Users in the event of contingency i.e. total or partial blackouts of STS or Regional Transmission System to achieve the fastest recovery taking into account the essential load, Generator capabilities and system constraints.
- **12.2 Contingency Planning Procedure:** The contingency planning and blackstart procedure for the **State Transmission System** shall be as per Load Despatch & System Operation Manual.
- 12.3 Restoration Procedure: The restoration procedure for STS shall be prepared by SLDC for the following contingency:
 - (i) Total system black out
 - (ii) Partial System Blackout
 - (iii) Synchronisation of System Islands and System Split (separation)

The procedure shall be in conformity to the Recovery Procedure of the **Northern Region** prescribed under **IEGC** to be updated with new network parameters.

The restoration process shall take into account the generator capabilities and the operational constraints of Region and **STS** in achieving normalcy in the shortest possible time. The Users should be aware of the steps to be taken during the **Grid Disturbance** and system restoration process.

12.4 During the restoration period as certified by SLDC the provision of ABT shall remain